Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
Methods Mol Biol. 2025;2872:87-100. doi: 10.1007/978-1-0716-4224-5_6.
The regulation of mitotic spindle position and orientation, and consequent division plane specification, is critical for early embryo development, tissue architecture and stem cells. Accordingly, defects in spindle positioning have been associated with the emergence of tissue disorders and mis-specification of cell fates, causing the formation of tumors, for instance, in stem cell populations. In such context, methods to physically manipulate mitotic spindle position or orientation in living cells bear the promise of dissecting the causal impact of spindle mis-positioning on cell or tissue behavior. Here, we describe a method to directly modulate mitotic spindle position and orientation with in vivo magnetic tweezers in developing sea urchin embryos. This method allows for monitoring the impact of spindle orientation on embryo development and quantifying forces and torques needed to move or rotate spindles. It may be transposable to many other cell, embryo or tissue types.
有丝分裂纺锤体位置和方向的调节,以及随后的分裂面特化,对早期胚胎发育、组织结构和干细胞至关重要。因此,纺锤体定位的缺陷与组织紊乱和细胞命运特化的出现有关,导致肿瘤的形成,例如,在干细胞群体中。在这种情况下,物理操纵活细胞有丝分裂纺锤体位置或方向的方法有望剖析纺锤体定位错误对细胞或组织行为的因果影响。在这里,我们描述了一种在发育中的海胆胚胎中使用体内磁镊直接调节有丝分裂纺锤体位置和方向的方法。该方法允许监测纺锤体方向对胚胎发育的影响,并量化移动或旋转纺锤体所需的力和扭矩。它可能适用于许多其他细胞、胚胎或组织类型。