Bigdely-Shamlo Nima, Mullen Tim, Kothe Christian, Su Kyung-Min, Robbins Kay A
Syntrogi Inc. San Diego, CA, USA.
Syntrogi Inc. San Diego, CA, USA ; Swartz Center for Computational Neuroscience, University of California San Diego, La Jolla, CA, USA.
Front Neuroinform. 2015 Jun 18;9:16. doi: 10.3389/fninf.2015.00016. eCollection 2015.
The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode.
收集脑成像和生理测量数据的技术已变得便携且无处不在,这为大规模分析现实世界中的人类成像数据提供了可能。就其本质而言,此类数据量大且复杂,因此自动化处理至关重要。本文展示了在脑电图(EEG)预处理流程的早期阶段若不加以关注,会如何降低信噪比并将不需要的伪迹引入数据中,尤其是在单精度计算时。我们证明了普通平均参考法能提高信噪比,但噪声通道会污染结果。我们还表明,噪声通道的识别取决于参考,并研究了滤波、噪声通道识别和参考之间的复杂相互作用。我们引入了一种多阶段稳健参考方案来处理噪声通道与参考之间的相互作用。我们提出了一个标准化的早期EEG处理流程(PREP),并讨论了该流程在600多个EEG数据集上的应用。该流程为每个处理的数据集生成一份自动报告。用户可从http://eegstudy.org/prepcode免费下载PREP流程作为MATLAB库。