Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
Cell Rep. 2018 Aug 7;24(6):1536-1549. doi: 10.1016/j.celrep.2018.07.011.
Climbing fibers (CFs) provide instructive signals driving cerebellar learning, but mechanisms causing the variable CF responses in Purkinje cells (PCs) are not fully understood. Using a new experimentally validated PC model, we unveil the ionic mechanisms underlying CF-evoked distinct spike waveforms on different parts of the PC. We demonstrate that voltage can gate both the amplitude and the spatial range of CF-evoked Ca influx by the availability of K currents. This makes the energy consumed during a complex spike (CS) also voltage dependent. PC dendrites exhibit inhomogeneous excitability with individual branches as computational units for CF input. The variability of somatic CSs can be explained by voltage state, CF activation phase, and instantaneous CF firing rate. Concurrent clustered synaptic inputs affect CSs by modulating dendritic responses in a spatially precise way. The voltage- and branch-specific CF responses can increase dendritic computational capacity and enable PCs to actively integrate CF signals.
climbing fibers (CFs) 提供了指导信号,驱动小脑学习,但导致浦肯野细胞 (PCs) 中 CF 反应的可变机制尚不完全清楚。使用一种新的经过实验验证的 PC 模型,我们揭示了 CF 诱发 PC 不同部位不同尖峰波形的离子机制。我们证明,通过 K 电流的可用性,电压可以调节 CF 诱发 Ca 内流的幅度和空间范围。这使得在复杂峰 (CS) 期间消耗的能量也与电压有关。PC 树突具有不均匀的兴奋性,个体分支作为 CF 输入的计算单元。由于电压状态、CF 激活相位和瞬时 CF 放电率,胞体 CS 的可变性可以得到解释。同时发生的簇状突触输入通过以空间精确的方式调节树突反应来影响 CS。电压和分支特异性的 CF 反应可以增加树突计算能力,并使 PCs 能够主动整合 CF 信号。