文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

浦肯野细胞中多重编码的细胞电生理特性。

The Cellular Electrophysiological Properties Underlying Multiplexed Coding in Purkinje Cells.

机构信息

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan

Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454.

出版信息

J Neurosci. 2021 Mar 3;41(9):1850-1863. doi: 10.1523/JNEUROSCI.1719-20.2020. Epub 2021 Jan 15.


DOI:10.1523/JNEUROSCI.1719-20.2020
PMID:33452223
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7939085/
Abstract

Neuronal firing patterns are crucial to underpin circuit level behaviors. In cerebellar Purkinje cells (PCs), both spike rates and pauses are used for behavioral coding, but the cellular mechanisms causing code transitions remain unknown. We use a well-validated PC model to explore the coding strategy that individual PCs use to process parallel fiber (PF) inputs. We find increasing input intensity shifts PCs from linear rate-coders to burst-pause timing-coders by triggering localized dendritic spikes. We validate dendritic spike properties with experimental data, elucidate spiking mechanisms, and predict spiking thresholds with and without inhibition. Both linear and burst-pause computations use individual branches as computational units, which challenges the traditional view of PCs as linear point neurons. Dendritic spike thresholds can be regulated by voltage state, compartmentalized channel modulation, between-branch interaction and synaptic inhibition to expand the dynamic range of linear computation or burst-pause computation. In addition, co-activated PF inputs between branches can modify somatic maximum spike rates and pause durations to make them carry analog signals. Our results provide new insights into the strategies used by individual neurons to expand their capacity of information processing. Understanding how neurons process information is a fundamental question in neuroscience. Purkinje cells (PCs) were traditionally regarded as linear point neurons. We used computational modeling to unveil their electrophysiological properties underlying the multiplexed coding strategy that is observed during behaviors. We demonstrate that increasing input intensity triggers localized dendritic spikes, shifting PCs from linear rate-coders to burst-pause timing-coders. Both coding strategies work at the level of individual dendritic branches. Our work suggests that PCs have the ability to implement branch-specific multiplexed coding at the cellular level, thereby increasing the capacity of cerebellar coding and learning.

摘要

神经元的发放模式对于支持电路水平的行为至关重要。在小脑浦肯野细胞(PC)中,尖峰率和停顿都被用于行为编码,但导致编码转换的细胞机制尚不清楚。我们使用经过充分验证的 PC 模型来探索单个 PC 用于处理平行纤维(PF)输入的编码策略。我们发现,随着输入强度的增加,通过触发局部树突棘,PC 从线性率编码器转变为爆发停顿定时编码器。我们使用实验数据验证了树突棘的特性,阐明了尖峰机制,并预测了有和没有抑制时的尖峰阈值。线性和爆发停顿计算都使用单个分支作为计算单元,这挑战了 PC 作为线性点神经元的传统观点。树突棘阈值可以通过电压状态、分支间的相互作用和突触抑制来调节,以扩展线性计算或爆发停顿计算的动态范围。此外,分支之间的共同激活 PF 输入可以改变体最大尖峰率和停顿持续时间,使其携带模拟信号。我们的结果为单个神经元用于扩展其信息处理能力的策略提供了新的见解。理解神经元如何处理信息是神经科学中的一个基本问题。浦肯野细胞(PC)传统上被认为是线性点神经元。我们使用计算建模来揭示它们在行为过程中观察到的多路复用编码策略的电生理特性。我们证明,增加输入强度会触发局部树突棘,从而将 PC 从线性率编码器转换为爆发停顿定时编码器。这两种编码策略都在单个树突分支的水平上起作用。我们的工作表明,PC 具有在细胞水平上实现分支特异性多路复用编码的能力,从而增加了小脑编码和学习的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/cf57ef1c6ece/SN-JNSJ210010F011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/95a92239177b/SN-JNSJ210010F001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/076029804743/SN-JNSJ210010F002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/ef09fa1c8c57/SN-JNSJ210010F003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/3f5eacce19b3/SN-JNSJ210010F004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/54f40e5097af/SN-JNSJ210010F005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/0b9ff317685b/SN-JNSJ210010F006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/f4438ebdaf4f/SN-JNSJ210010F007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/0e8be76cfa1e/SN-JNSJ210010F008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/ffd8478f8996/SN-JNSJ210010F009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/cfe7e97162bc/SN-JNSJ210010F010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/cf57ef1c6ece/SN-JNSJ210010F011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/95a92239177b/SN-JNSJ210010F001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/076029804743/SN-JNSJ210010F002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/ef09fa1c8c57/SN-JNSJ210010F003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/3f5eacce19b3/SN-JNSJ210010F004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/54f40e5097af/SN-JNSJ210010F005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/0b9ff317685b/SN-JNSJ210010F006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/f4438ebdaf4f/SN-JNSJ210010F007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/0e8be76cfa1e/SN-JNSJ210010F008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/ffd8478f8996/SN-JNSJ210010F009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/cfe7e97162bc/SN-JNSJ210010F010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/7939085/cf57ef1c6ece/SN-JNSJ210010F011.jpg

相似文献

[1]
The Cellular Electrophysiological Properties Underlying Multiplexed Coding in Purkinje Cells.

J Neurosci. 2021-3-3

[2]
Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.

PLoS Comput Biol. 2021-2

[3]
The origin of the complex spike in cerebellar Purkinje cells.

J Neurosci. 2008-7-23

[4]
Multiplexed coding by cerebellar Purkinje neurons.

Elife. 2016-7-26

[5]
Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

PLoS Comput Biol. 2015-12-2

[6]
Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells.

Cell Rep. 2018-8-7

[7]
An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.

J Neurophysiol. 1994-1

[8]
Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory.

Neuroscience. 2009-9-1

[9]
Implications of variable synaptic weights for rate and temporal coding of cerebellar outputs.

Elife. 2024-1-19

[10]
Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli.

J Physiol. 2016-2-15

引用本文的文献

[1]
Non-allometric expansion and enhanced compartmentalization of Purkinje cell dendrites in the human cerebellum.

Elife. 2025-4-15

[2]
Cerebellar contributions to dystonia: unraveling the role of Purkinje cells and cerebellar nuclei.

Dystonia. 2025

[3]
Non-allometric expansion and enhanced compartmentalization of Purkinje cell dendrites in the human cerebellum.

bioRxiv. 2025-2-20

[4]
A Learning Dendritic Neuron-Based Motion Direction Detective System and Its Application to Grayscale Images.

Brain Sci. 2024-8-27

[5]
Branch-specific clustered parallel fiber input controls dendritic computation in Purkinje cells.

iScience. 2024-8-20

[6]
Purkinje cell models: past, present and future.

Front Comput Neurosci. 2024-7-10

[7]
Computational Modeling of Extrasynaptic NMDA Receptors: Insights into Dendritic Signal Amplification Mechanisms.

Int J Mol Sci. 2024-4-11

[8]
Basket to Purkinje Cell Inhibitory Ephaptic Coupling Is Abolished in Episodic Ataxia Type 1.

Cells. 2023-5-13

[9]
Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes.

Elife. 2023-5-9

[10]
Diverse role of NMDA receptors for dendritic integration of neural dynamics.

PLoS Comput Biol. 2023-4

本文引用的文献

[1]
Firing rate-dependent phase responses of Purkinje cells support transient oscillations.

Elife. 2020-9-8

[2]
Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output In Vivo.

Cell Rep. 2020-3-3

[3]
Climbing Fibers Provide Graded Error Signals in Cerebellar Learning.

Front Syst Neurosci. 2019-9-11

[4]
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation.

PLoS Comput Biol. 2019-3-12

[5]
Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice.

Nat Commun. 2018-8-23

[6]
Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum.

Neuron. 2018-8-16

[7]
Inhibition gates supralinear Ca signaling in Purkinje cell dendrites during practiced movements.

Elife. 2018-8-17

[8]
Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells.

Cell Rep. 2018-8-7

[9]
Sensorimotor Integration and Amplification of Reflexive Whisking by Well-Timed Spiking in the Cerebellar Corticonuclear Circuit.

Neuron. 2018-7-12

[10]
Switching On Depression and Potentiation in the Cerebellum.

Cell Rep. 2018-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索