Suppr超能文献

检测问卷数据中的计算机生成随机响应:七种指标的比较。

Detecting computer-generated random responding in questionnaire-based data: A comparison of seven indices.

机构信息

Institute of Psychology, University of Lausanne, Bâtiment Geopolis 4122, CH-1015, Lausanne, Switzerland.

出版信息

Behav Res Methods. 2019 Oct;51(5):2228-2237. doi: 10.3758/s13428-018-1103-y.

Abstract

With the development of online data collection and instruments such as Amazon's Mechanical Turk (MTurk), the appearance of malicious software that generates responses to surveys in order to earn money represents a major issue, for both economic and scientific reasons. Indeed, even if paying one respondent to complete one questionnaire represents a very small cost, the multiplication of botnets providing invalid response sets may ultimately reduce study validity while increasing research costs. Several techniques have been proposed thus far to detect problematic human response sets, but little research has been undertaken to test the extent to which they actually detect nonhuman response sets. Thus, we proposed to conduct an empirical comparison of these indices. Assuming that most botnet programs are based on random uniform distributions of responses, we present and compare seven indices in this study to detect nonhuman response sets. A sample of 1,967 human respondents was mixed with different percentages (i.e., from 5% to 50%) of simulated random response sets. Three of the seven indices (i.e., response coherence, Mahalanobis distance, and person-total correlation) appear to be the best estimators for detecting nonhuman response sets. Given that two of those indices-Mahalanobis distance and person-total correlation-are calculated easily, every researcher working with online questionnaires could use them to screen for the presence of such invalid data.

摘要

随着在线数据收集和亚马逊土耳其机器人 (MTurk) 等工具的发展,为了赚钱而生成响应以进行调查的恶意软件的出现,无论是出于经济原因还是科学原因,都是一个主要问题。事实上,即使支付一个受访者完成一份问卷的费用非常低,但提供无效响应集的僵尸网络的数量增加最终可能会降低研究的有效性,同时增加研究成本。迄今为止,已经提出了几种技术来检测有问题的人类响应集,但很少有研究致力于测试它们实际上检测非人类响应集的程度。因此,我们建议对这些指标进行实证比较。假设大多数僵尸程序都是基于响应的随机均匀分布,我们在这项研究中提出并比较了七种检测非人类响应集的指标。一个由 1967 名人类受访者组成的样本与不同百分比(即 5%至 50%)的模拟随机响应集混合在一起。这七种指标中的三种(即响应一致性、马氏距离和个体总分相关)似乎是检测非人类响应集的最佳估计值。鉴于其中两个指标——马氏距离和个体总分相关——很容易计算,因此每个使用在线问卷进行研究的研究人员都可以使用它们来筛选此类无效数据的存在。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验