Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, 50/A Práter st., H-1083, Budapest, Hungary. Institute for Technical Physics and Mateial Sciences, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 29-33 Konkoly-Thege st., H-1121, Budapest, Hungary.
J Neural Eng. 2018 Oct;15(5):056030. doi: 10.1088/1741-2552/aad972. Epub 2018 Aug 10.
Chronic application of brain implants monitoring or modulating neuronal activity are hindered by the foreign body response of the tissue. Topographical modification of implant surfaces may reduce negative tissue response by imitating the structure of the extracellular matrix and therefore affecting the attachment and behavior of neural cells.
In our in vitro study, the effect of nanostructuring was investigated on two commercially used neural implant materials: silicon and platinum. The adhesion, survival and arrangement of neural stem cells (NE4C) and microglial cells (BV2) were investigated and compared to nanostructured and flat Si and Pt surfaces using cell viability studies and fluorescent microscopy image analysis.
Our data indicated that neural cells established strong adhesive couplings with each other, instead of binding to the artificial surfaces.
The phenomena resemble some features of in vivo separation of living tissue from the implanted artificial material, providing an in vitro model for studying immune response.
慢性应用脑植入物监测或调节神经元活动受到组织的异物反应的阻碍。通过模仿细胞外基质的结构来修饰植入物表面的拓扑结构,可以减少负面的组织反应,从而影响神经细胞的附着和行为。
在我们的体外研究中,研究了纳米结构对两种商业上使用的神经植入材料:硅和铂的影响。使用细胞活力研究和荧光显微镜图像分析,研究并比较了神经干细胞(NE4C)和小胶质细胞(BV2)在纳米结构和平面 Si 和 Pt 表面上的黏附、存活和排列。
我们的数据表明,神经细胞彼此之间建立了牢固的黏附连接,而不是与人工表面结合。
这些现象类似于体内将活体组织与植入的人工材料分离的某些特征,为研究免疫反应提供了体外模型。