Suppr超能文献

纳米结构神经植入物附近的神经生化变化。

Neurobiochemical changes in the vicinity of a nanostructured neural implant.

作者信息

Bérces Zsófia, Tóth Kinga, Márton Gergely, Pál Ildikó, Kováts-Megyesi Bálint, Fekete Zoltán, Ulbert István, Pongrácz Anita

机构信息

Faculty of Information Technology, Pázmány Péter Catholic University, 50/A Práter st., H-1083, Budapest, Hungary.

MTA EK NAP B Research Group for Implantable Microsystems, 29-33 Konkoly-Thege st., H-1121, Budapest, Hungary.

出版信息

Sci Rep. 2016 Oct 24;6:35944. doi: 10.1038/srep35944.

Abstract

Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign body response of the tissue causing the loss of neurons and a reactive astrogliosis around the implant surface. Improving the biocompatibility of implant surfaces, especially promoting neuronal attachment and regeneration is therefore essential. In our work, bioactive properties of implanted black polySi nanostructured surfaces (520-800 nm long nanopillars with a diameter of 150-200 nm) were investigated and compared to microstructured Si surfaces in eight-week-long in vivo experiments. Glial encapsulation and local neuronal cell loss were characterised using GFAP and NeuN immunostaining respectively, followed by systematic image analysis. Regarding the severity of gliosis, no significant difference was observed in the vicinity of the different implant surfaces, however, the number of surviving neurons close to the nanostructured surface was higher than that of the microstructured ones. Our results imply that the functionality of implanted microelectrodes covered by Si nanopillars may lead to improved long-term recordings.

摘要

包括记录和刺激电极在内的神经接口技术目前正处于临床试验的早期阶段,旨在帮助脊髓损伤、退行性疾病、中断下行运动通路的中风或肢体截肢患者。它们的使用寿命至关重要;然而,它受到组织的异物反应的限制,这种反应会导致神经元的丧失以及植入物表面周围的反应性星形胶质细胞增生。因此,提高植入物表面的生物相容性,尤其是促进神经元附着和再生至关重要。在我们的工作中,在为期八周的体内实验中,研究了植入的黑色多晶硅纳米结构表面(直径为150 - 200nm、长度为520 - 800nm的纳米柱)的生物活性特性,并与微结构硅表面进行了比较。分别使用GFAP和NeuN免疫染色对胶质细胞包封和局部神经元细胞损失进行了表征,随后进行了系统的图像分析。关于胶质增生的严重程度,在不同植入物表面附近未观察到显著差异,然而,靠近纳米结构表面存活的神经元数量高于微结构表面。我们的结果表明,由硅纳米柱覆盖的植入微电极的功能可能会改善长期记录。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ab/5075914/b7f49584d631/srep35944-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验