Suppr超能文献

使用多级典型相关分析和组稀疏性从3T磁共振成像进行7T样图像的分层重建

Hierarchical Reconstruction of 7T-like Images from 3T MRI Using Multi-level CCA and Group Sparsity.

作者信息

Bahrami Khosro, Shi Feng, Zong Xiaopeng, Shin Hae Won, An Hongyu, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC.

Department of Neurology, University of North Carolina at Chapel Hill, NC.

出版信息

Med Image Comput Comput Assist Interv. 2015 Oct;9350:659-666. doi: 10.1007/978-3-319-24571-3_79. Epub 2015 Nov 20.

Abstract

Advancements in 7T MR imaging bring higher spatial resolution and clearer tissue contrast, in comparison to the conventional 3T and 1.5T MR scanners. However, 7T MRI scanners are less accessible at the current stage due to higher costs. Through analyzing the appearances of 7T images, we could improve both the resolution and quality of 3T images by properly mapping them to 7T-like images; thus, promoting more accurate post-processing tasks, such as segmentation. To achieve this method based on an unique dataset acquired both 3T and 7T images from same subjects, we propose novel multi-level Canonical Correlation Analysis (CCA) method and group sparsity as a hierarchical framework to reconstruct 7T-like MRI from 3T MRI. First, the input 3T MR image is partitioned into a set of overlapping patches. For each patch, the local coupled 3T and 7T dictionaries are constructed by extracting the patches from a neighboring region from all aligned 3T and 7T images in the training set. In the training phase, we have both 3T and 7T MR images scanned from each training subject. Then, these two patch sets are mapped to the same space using multi-level CCA. Next, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are utilized to reconstruct the 7T patch with the corresponding 7T dictionary. Group sparsity is further utilized to maintain the consistency between neighboring patches. Such reconstruction is performed hierarchically with adaptive patch size. The experiments were performed on 10 subjects who had both 3T and 7T MR images. Experimental results demonstrate that our proposed method is capable of recovering rich structural details and outperforms other methods, including the sparse representation method and CCA method.

摘要

与传统的3T和1.5T磁共振成像扫描仪相比,7T磁共振成像的进步带来了更高的空间分辨率和更清晰的组织对比度。然而,由于成本较高,7T磁共振成像扫描仪在现阶段的可及性较低。通过分析7T图像的外观,我们可以通过将3T图像适当地映射到类似7T的图像来提高其分辨率和质量;从而促进更准确的后处理任务,如分割。为了基于从同一受试者获取的3T和7T图像的独特数据集实现此方法,我们提出了新颖的多级典型相关分析(CCA)方法和组稀疏性作为分层框架,以从3T磁共振成像重建类似7T的磁共振成像。首先,将输入的3T磁共振图像划分为一组重叠的补丁。对于每个补丁,通过从训练集中所有对齐的3T和7T图像的相邻区域提取补丁来构建局部耦合的3T和7T字典。在训练阶段,我们对每个训练受试者进行了3T和7T磁共振成像扫描。然后,使用多级CCA将这两个补丁集映射到相同的空间。接下来,每个输入的3T磁共振成像补丁由3T字典进行稀疏表示,然后利用获得的稀疏系数与相应的7T字典重建7T补丁。进一步利用组稀疏性来保持相邻补丁之间的一致性。这种重建以自适应补丁大小分层进行。实验在10名同时拥有3T和7T磁共振图像的受试者上进行。实验结果表明,我们提出的方法能够恢复丰富的结构细节,并且优于其他方法,包括稀疏表示方法和CCA方法。

相似文献

2
Reconstruction of 7T-Like Images From 3T MRI.从3T磁共振成像重建类似7T的图像。
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.
3
7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.用于改进3T磁共振图像分割的7T引导学习框架
Med Image Comput Comput Assist Interv. 2016 Oct;9901:572-580. doi: 10.1007/978-3-319-46723-8_66. Epub 2016 Oct 2.
5
7T-guided super-resolution of 3T MRI.7T 引导下的 3T MRI 超分辨率
Med Phys. 2017 May;44(5):1661-1677. doi: 10.1002/mp.12132. Epub 2017 Apr 22.

引用本文的文献

3
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
4
7T-guided super-resolution of 3T MRI.7T 引导下的 3T MRI 超分辨率
Med Phys. 2017 May;44(5):1661-1677. doi: 10.1002/mp.12132. Epub 2017 Apr 22.
5
7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.用于改进3T磁共振图像分割的7T引导学习框架
Med Image Comput Comput Assist Interv. 2016 Oct;9901:572-580. doi: 10.1007/978-3-319-46723-8_66. Epub 2016 Oct 2.
6
Random forest regression for magnetic resonance image synthesis.用于磁共振图像合成的随机森林回归
Med Image Anal. 2017 Jan;35:475-488. doi: 10.1016/j.media.2016.08.009. Epub 2016 Aug 31.
7
Reconstruction of 7T-Like Images From 3T MRI.从3T磁共振成像重建类似7T的图像。
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.

本文引用的文献

2
Clinical applications of 7 T MRI in the brain.7T MRI 在脑部的临床应用。
Eur J Radiol. 2013 May;82(5):708-18. doi: 10.1016/j.ejrad.2011.07.007. Epub 2011 Sep 19.
3
Image super-resolution via sparse representation.基于稀疏表示的图像超分辨率重建。
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.
5
Fast and robust multiframe super resolution.快速且稳健的多帧超分辨率
IEEE Trans Image Process. 2004 Oct;13(10):1327-44. doi: 10.1109/tip.2004.834669.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验