Suppr超能文献

基于深度卷积对抗网络的医学图像合成。

Medical Image Synthesis with Deep Convolutional Adversarial Networks.

出版信息

IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.

Abstract

Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks.

摘要

医学成像在各种临床应用中起着至关重要的作用。然而,由于成本和辐射剂量等多种因素的考虑,某些成像方式的获取可能受到限制。因此,通过估计所需的成像方式而无需实际扫描,可以极大地受益于医学图像合成。在本文中,我们提出了一种生成对抗方法来解决这个具有挑战性的问题。具体来说,我们训练了一个全卷积网络(FCN),以便在给定源图像的情况下生成目标图像。为了更好地模拟从源到目标的非线性映射,并生成更逼真的目标图像,我们建议使用对抗学习策略来更好地对 FCN 进行建模。此外,FCN 被设计为包含基于图像梯度差的损失函数,以避免生成模糊的目标图像。还探索了长期残差单元,以帮助网络的训练。我们进一步应用自动上下文模型来实现上下文感知的深度卷积对抗网络。实验结果表明,我们的方法在从相应的源图像合成目标图像方面是准确和鲁棒的。特别是,我们在三个数据集上评估了我们的方法,以解决从 MRI 生成 CT 和从 3T MRI 生成 7T MRI 的任务。与比较的现有方法相比,我们的方法在所有数据集和任务中都表现出色。

相似文献

1
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
2
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
4
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.

引用本文的文献

本文引用的文献

2
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
4
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
7
Reconstruction of 7T-Like Images From 3T MRI.从3T磁共振成像重建类似7T的图像。
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.
8
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
9
Sparse Bayesian Classification of EEG for Brain-Computer Interface.基于稀疏贝叶斯的脑-机接口 EEG 分类
IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2256-2267. doi: 10.1109/TNNLS.2015.2476656. Epub 2015 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验