Department of Radiology, Haukeland University Hospital, Bergen, Norway.
Section for Radiology, Department of Clinical Medicine, University of Bergen, Norway.
J Magn Reson Imaging. 2018 Dec;48(6):1637-1647. doi: 10.1002/jmri.26184. Epub 2018 Aug 13.
Improved methods for preoperative risk stratification in endometrial cancer are highly requested by gynecologists. Texture analysis is a method for quantification of heterogeneity in images, increasingly reported as a promising diagnostic tool in various cancer types, but largely unexplored in endometrial cancer.
To explore whether tumor texture parameters from preoperative MRI are related to known prognostic features (deep myometrial invasion, cervical stroma invasion, lymph node metastases, and high-risk histological subtype) and to outcome in endometrial cancer patients.
Prospective cohort study.
POPULATION/SUBJECTS: In all, 180 patients with endometrial carcinoma were included from April 2009 to November 2013 and studied until January 2017.
FIELD STRENGTH/SEQUENCES: Preoperative pelvic MRI including contrast-enhanced T -weighted (T c), T -weighted, and diffusion-weighted imaging at 1.5T.
Tumor regions of interest (ROIs) were manually drawn on the slice displaying the largest cross-sectional tumor area, using the proprietary research software TexRAD for analysis. With a filtration-histogram technique, the texture parameters standard deviation, entropy, mean of positive pixels (MPP), skewness, and kurtosis were calculated.
Associations between texture parameters and histological features were assessed by uni- and multivariable logistic regression, including models adjusting for preoperative biopsy status and conventional MRI findings. Multivariable Cox regression analysis was used for survival analysis.
High tumor entropy in apparent diffusion coefficient (ADC) maps independently predicted deep myometrial invasion (odds ratio [OR] 3.2, P lt 0.001), and high MPP in T c images independently predicted high-risk histological subtype (OR 1.01, P = 0.004). High kurtosis in T c images predicted reduced recurrence- and progression-free survival (hazard ratio [HR] 1.5, P lt 0.001) after adjusting for MRI-measured tumor volume and histological risk at biopsy.
MRI-derived tumor texture parameters independently predicted deep myometrial invasion, high-risk histological subtype, and reduced survival in endometrial carcinomas, and thus, represent promising imaging biomarkers providing a more refined preoperative risk assessment that may ultimately enable better tailored treatment strategies in endometrial cancer.
2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1637-1647.
妇科医生强烈要求改进子宫内膜癌的术前风险分层方法。纹理分析是一种量化图像异质性的方法,已越来越多地被报道为各种癌症类型的有前途的诊断工具,但在子宫内膜癌中尚未得到广泛探索。
探讨术前 MRI 肿瘤纹理参数是否与已知的预后特征(深层肌层浸润、宫颈基质浸润、淋巴结转移和高危组织学亚型)以及子宫内膜癌患者的预后相关。
前瞻性队列研究。
人群/受试者:共纳入 180 例 2009 年 4 月至 2013 年 11 月期间的子宫内膜癌患者,并于 2017 年 1 月进行了研究。
磁场强度/序列:术前盆腔 MRI 包括对比增强 T1 加权(T1 c)、T1 加权和扩散加权成像,场强为 1.5T。
使用专有的研究软件 TexRAD 在显示最大肿瘤横截面积的切片上手动绘制肿瘤感兴趣区(ROI)进行分析。采用滤波直方图技术计算纹理参数标准差、熵、阳性像素平均值(MPP)、偏度和峰度。
采用单变量和多变量逻辑回归评估纹理参数与组织学特征之间的相关性,包括调整术前活检状态和常规 MRI 结果的模型。采用多变量 Cox 回归分析进行生存分析。
表观扩散系数(ADC)图中高肿瘤熵独立预测深层肌层浸润(比值比[OR]3.2,P<0.001),T1 c 图像中高 MPP 独立预测高危组织学亚型(OR 1.01,P=0.004)。T1 c 图像中高峰度预测复发和无进展生存时间缩短(调整 MRI 测量的肿瘤体积和活检时的组织学风险后 HR 1.5,P<0.001)。
MRI 衍生的肿瘤纹理参数独立预测子宫内膜癌的深层肌层浸润、高危组织学亚型和生存时间缩短,因此代表有前途的成像生物标志物,可提供更精细的术前风险评估,最终可能使子宫内膜癌的治疗策略更加个体化。
2 技术功效:2 级 J. Magn. Reson. Imaging 2018;48:1637-1647.