Suppr超能文献

下一代测序中用于临床实践的改进肿瘤纯度指标:肿瘤细胞性与测序结果的综合解读(IINCaSe)方法

Improved Tumor Purity Metrics in Next-generation Sequencing for Clinical Practice: The Integrated Interpretation of Neoplastic Cellularity and Sequencing Results (IINCaSe) Approach.

作者信息

Patel Nirali M, Jo Heejoon, Eberhard David A, Yin Xiaoying, Hayward Michele C, Stein Matthew K, Hayes David Neil, Grilley-Olson Juneko E

机构信息

Department of Pathology and Laboratory Medicine.

Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC.

出版信息

Appl Immunohistochem Mol Morphol. 2019 Nov/Dec;27(10):764-772. doi: 10.1097/PAI.0000000000000684.

Abstract

Neoplastic cellularity contributes to the analytic sensitivity of most present technologies for mutation detection, such that they underperform when stroma and inflammatory cells dilute a cancer specimen's variant fraction. Thus, tumor purity assessment by light microscopy is used to determine sample adequacy before sequencing and to interpret the significance of negative results and mutant allele fraction afterwards. However, pathologist estimates of tumor purity are imprecise and have limited reproducibility. With the advent of massively parallel sequencing, large amounts of molecular data can be analyzed by computational purity algorithms. We retrospectively compared tumor purity of 3 computational algorithms with neoplastic cellularity using hematoxylin and eosin light microscopy to determine which was best for clinical evaluation of molecular profiling. Data were analyzed from 881 cancer patients from a clinical trial cohort, LCCC1108 (UNCseq), whose tumors had targeted massively parallel sequencing. Concordance among algorithms was poor, and the specimens analyzed had high rates of algorithm failure partially due to variable tumor purity. Computational tumor purity estimates did not add value beyond the pathologist's estimate of neoplastic cellularity microscopy. To improve present methods, we propose a semiquantitative, clinically applicable strategy based on mutant allele fraction and copy number changes present within a given specimen, which when combined with the morphologic tumor purity estimate, guide the interpretation of next-generation sequencing results in cancer patients.

摘要

肿瘤细胞构成对目前大多数用于突变检测的技术的分析灵敏度有影响,以至于当基质和炎性细胞稀释癌症标本的变异分数时,这些技术的表现就会不佳。因此,在测序前通过光学显微镜评估肿瘤纯度,以确定样本是否充足,并在之后解释阴性结果和突变等位基因分数的意义。然而,病理学家对肿瘤纯度的估计并不精确,且重现性有限。随着大规模平行测序的出现,可以通过计算纯度算法分析大量分子数据。我们使用苏木精和伊红光学显微镜,回顾性比较了3种计算算法的肿瘤纯度与肿瘤细胞构成,以确定哪种算法最适合用于分子谱分析的临床评估。对来自临床试验队列LCCC1108(UNCseq)的881例癌症患者的数据进行了分析,这些患者的肿瘤进行了靶向大规模平行测序。各算法之间的一致性较差,且所分析的标本算法失败率较高,部分原因是肿瘤纯度存在差异。计算得到的肿瘤纯度估计值并没有比病理学家对肿瘤细胞构成显微镜检查的估计更有价值。为了改进现有方法,我们提出了一种基于给定标本中存在的突变等位基因分数和拷贝数变化的半定量、临床适用策略,该策略与形态学肿瘤纯度估计相结合,可指导对癌症患者下一代测序结果的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e042/6887630/b2cac5987bdc/pai-27-764-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验