Department of Plant Biology, University of California, Davis, California 95616.
Department of Plant Biology, University of California, Davis, California 95616
Plant Cell. 2018 Sep;30(9):2161-2173. doi: 10.1105/tpc.18.00427. Epub 2018 Aug 13.
The degree of residual structure retained by proteins while passing through biological membranes is a fundamental mechanistic question of protein translocation. Proteins are generally thought to be unfolded while transported through canonical proteinaceous translocons, including the translocons of the outer and inner chloroplast envelope membranes (TOC and TIC). Here, we readdressed the issue and found that the TOC/TIC translocons accommodated the tightly folded dihydrofolate reductase (DHFR) protein in complex with its stabilizing ligand, methotrexate (MTX). We employed a fluorescein-conjugated methotrexate (FMTX), which has slow membrane transport rates relative to unconjugated MTX, to show that the rate of ligand accumulation inside chloroplasts is faster when bound to DHFR that is actively being imported. Stromal accumulation of FMTX is ATP dependent when DHFR is actively being imported but is otherwise ATP independent, again indicating DHFR/FMTX complex import. Furthermore, the TOC/TIC pore size was probed with fixed-diameter particles and found to be greater than 25.6 Å, large enough to support folded DHFR import and also larger than mitochondrial and bacterial protein translocons that have a requirement for protein unfolding. This unique pore size and the ability to import folded proteins have critical implications regarding the structure and mechanism of the TOC/TIC translocons.
蛋白质穿越生物膜时保留的结构程度是蛋白质易位的一个基本机械问题。一般认为,蛋白质在通过典型的蛋白质移位通道(包括叶绿体外膜和内膜的转位器(TOC 和 TIC))时是未折叠的。在这里,我们重新研究了这个问题,发现 TOC/TIC 转位器容纳了与稳定配体甲氨蝶呤(MTX)结合的紧密折叠二氢叶酸还原酶(DHFR)蛋白。我们使用了一种荧光素标记的甲氨蝶呤(FMTX),与未结合的 MTX 相比,它在膜中的转运速度较慢,以表明当与正在被主动导入的 DHFR 结合时,配体在叶绿体内部的积累速度更快。当 DHFR 被主动导入时,基质中 FMTX 的积累是 ATP 依赖性的,但在其他情况下,ATP 是独立的,这再次表明 DHFR/FMTX 复合物的导入。此外,还使用固定直径的颗粒探测了 TOC/TIC 孔的大小,发现其大于 25.6 Å,足以支持折叠的 DHFR 导入,并且大于需要蛋白质展开的线粒体和细菌蛋白质转位器。这种独特的孔径和能够导入折叠蛋白质的能力,对于 TOC/TIC 转位器的结构和机制具有重要意义。