Suppr超能文献

蛋白液-液相分离起始的过氧化物酶体生物发生。

Peroxisome biogenesis initiated by protein phase separation.

机构信息

Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.

Douglas Research Centre, Montreal, Quebec, Canada.

出版信息

Nature. 2023 May;617(7961):608-615. doi: 10.1038/s41586-023-06044-1. Epub 2023 May 10.

Abstract

Peroxisomes are organelles that carry out β-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their dysfunction. Among disease-causing variant genes are those required for protein transport into peroxisomes. The peroxisomal protein import machinery, which also shares similarities with chloroplasts, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes. Current models postulate a large pore formed by transmembrane proteins; however, so far, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes the membrane proteins Pex13 and Pex14 and the cargo-protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions in Pex13 and Pex5 resemble those found in nuclear pore complex proteins. Peroxisomal protein import depends on both the number and pattern of aromatic residues in these intrinsically disordered regions, consistent with their roles as 'stickers' in associative polymer models of LLPS. Finally, imaging fluorescence cross-correlation spectroscopy shows that cargo import correlates with transient focusing of GFP-Pex13 and GFP-Pex14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our findings lead us to suggest a model in which LLPS of Pex5-cargo with Pex13 and Pex14 results in transient protein transport channels.

摘要

过氧化物酶体是进行脂肪酸和氨基酸β-氧化的细胞器。其功能障碍可导致罕见病和常见病。在致病变异基因中,有些是将蛋白质转运到过氧化物酶体所必需的。过氧化物酶体蛋白输入机制与叶绿体也有相似之处,其独特之处在于将折叠的和大的、直径达 10nm 的蛋白质复合物转运到过氧化物酶体中。目前的模型假设由跨膜蛋白形成一个大孔;然而,到目前为止,还没有观察到孔结构。在出芽酵母酿酒酵母中,最小的转运机制包括膜蛋白 Pex13 和 Pex14 以及货物蛋白结合转运受体 Pex5。在这里,我们表明 Pex13 与 Pex5-货物发生液-液相分离(LLPS)。Pex13 和 Pex5 中的无规卷曲区域类似于核孔复合物蛋白中的无规卷曲区域。过氧化物酶体蛋白的输入依赖于这些无规卷曲区域中芳香族残基的数量和模式,这与其在 LLPS 的缔合聚合物模型中作为“粘性物”的作用一致。最后,荧光交叉相关光谱成像表明,货物的输入与 GFP-Pex13 和 GFP-Pex14 在过氧化物酶体膜上的瞬时聚焦相关。Pex13 和 Pex14 以不同的时间框架形成焦点,这表明它们可能在不同的 Pex5-货物饱和浓度下形成通道。我们的发现使我们提出了一个模型,即 Pex5-货物与 Pex13 和 Pex14 的液-液相分离导致瞬时蛋白质转运通道的形成。

相似文献

1
Peroxisome biogenesis initiated by protein phase separation.
Nature. 2023 May;617(7961):608-615. doi: 10.1038/s41586-023-06044-1. Epub 2023 May 10.
2
A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes.
J Biol Chem. 2014 Jan 3;289(1):437-48. doi: 10.1074/jbc.M113.499707. Epub 2013 Nov 14.
3
Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif.
Nat Commun. 2024 Apr 18;15(1):3317. doi: 10.1038/s41467-024-47605-w.
7
A viable Arabidopsis pex13 missense allele confers severe peroxisomal defects and decreases PEX5 association with peroxisomes.
Plant Mol Biol. 2014 Sep;86(1-2):201-14. doi: 10.1007/s11103-014-0223-8. Epub 2014 Jul 10.
8
The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo.
J Biol Chem. 2017 Sep 15;292(37):15287-15300. doi: 10.1074/jbc.M117.805044. Epub 2017 Aug 1.
9
Structural biology of the import pathways of peroxisomal matrix proteins.
Biochim Biophys Acta. 2016 May;1863(5):804-13. doi: 10.1016/j.bbamcr.2015.09.034. Epub 2015 Oct 9.

引用本文的文献

2
PEX39 facilitates the peroxisomal import of PTS2-containing proteins.
Nat Cell Biol. 2025 Jul 30. doi: 10.1038/s41556-025-01711-z.
3
Redox regulation of LSD1/CATALASE 2 phase separation condensates controls location and functions.
New Phytol. 2025 Sep;247(6):2824-2838. doi: 10.1111/nph.70374. Epub 2025 Jul 21.
4
Identifying and characterizing a missing peroxin-PEX8-in Arabidopsis thaliana.
Plant Cell. 2025 Jul 1;37(7). doi: 10.1093/plcell/koaf166.
5
PEX14 condensates recruit receptor and cargo pairs for peroxisomal protein import.
Nat Struct Mol Biol. 2025 Jun 24. doi: 10.1038/s41594-025-01601-w.
6
Condensate-membrane interactions shape membranes, tune cytoskeletal assembly, and localize mRNAs.
Curr Opin Cell Biol. 2025 Aug;95:102540. doi: 10.1016/j.ceb.2025.102540. Epub 2025 May 26.
7
Import mechanism of peroxisomal proteins with an N-terminal signal sequence.
Nat Cell Biol. 2025 May 9. doi: 10.1038/s41556-025-01662-5.
8
ZBTB17/MIZ1 promotes peroxisome biogenesis by transcriptional regulation of PEX13.
J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202407198. Epub 2025 Apr 17.
10
The Atypical Pectin Methylesterase Family Member PME31 Promotes Seedling Lipid Droplet Utilization.
Plant Direct. 2025 Apr 9;9(4):e70054. doi: 10.1002/pld3.70054. eCollection 2025 Apr.

本文引用的文献

1
Protein import into peroxisomes occurs through a nuclear pore-like phase.
Science. 2022 Dec 16;378(6625):eadf3971. doi: 10.1126/science.adf3971.
2
A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel.
Nature. 2022 Jul;607(7918):374-380. doi: 10.1038/s41586-022-04903-x. Epub 2022 Jun 29.
3
Beyond rare disorders: A new era for peroxisomal pathophysiology.
Mol Cell. 2022 Jun 16;82(12):2228-2235. doi: 10.1016/j.molcel.2022.05.028.
4
Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains.
Nat Chem. 2022 Feb;14(2):196-207. doi: 10.1038/s41557-021-00840-w. Epub 2021 Dec 20.
5
Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2113789118.
6
Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins.
Front Cell Dev Biol. 2021 May 20;9:654163. doi: 10.3389/fcell.2021.654163. eCollection 2021.
7
Membrane Interactions of the Peroxisomal Proteins PEX5 and PEX14.
Front Cell Dev Biol. 2021 Apr 16;9:651449. doi: 10.3389/fcell.2021.651449. eCollection 2021.
8
Cargo transport through the nuclear pore complex at a glance.
J Cell Sci. 2021 Jan 25;134(2):jcs247874. doi: 10.1242/jcs.247874.
9
Liquid-Liquid Phase Transition Drives Intra-chloroplast Cargo Sorting.
Cell. 2020 Mar 19;180(6):1144-1159.e20. doi: 10.1016/j.cell.2020.02.045. Epub 2020 Mar 12.
10
Valence and patterning of aromatic residues determine the phase behavior of prion-like domains.
Science. 2020 Feb 7;367(6478):694-699. doi: 10.1126/science.aaw8653.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验