Suppr超能文献

通过静电纺丝制备纤维素纳米粒子。

Fabrication of cellulose nanoparticles through electrospraying.

机构信息

Department of Textile Engineering, Centre of Excellence in Applied Nanotechnology, Isfahan University of Technology, Isfahan 84156-83111, Iran.

Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran.

出版信息

IET Nanobiotechnol. 2018 Sep;12(6):807-813. doi: 10.1049/iet-nbt.2018.0044.

Abstract

This study reports the fabrication of cellulose nanoparticles through electrospraying the solution of cellulose in -dimethylacetamide/lithium chloride solvent as well as investigating the effect of electrospraying conditions and molecular weight on the average size of electrosprayed nanoparticles. Electrospraying of cellulose was carried out with the following range for each factor, namely concentration = 1-3 wt%, voltage = 15-23 kV, nozzle-collector distance = 10-25 cm, and feed rate = 0.03-0.0875 ml/h. The smallest nanoparticles had an average size of around 40 nm. Results showed that lowering the solution concentration and feed rate, as well as increasing the nozzle-collector distance and applied voltage led to a decrease in the average size of the electrosprayed cellulose nanoparticles. Fourier transform infrared analysis proved that no chemical change had occurred in the cellulose structure after the electrospraying process. According to X-ray diffraction (XRD) results, cellulose nanoparticles showed a lower degree of crystallinity in comparison with the raw cellulose powder. XRD results also proved the absence of LiCl salt in the electrosprayed nanoparticles.

摘要

本研究通过静电纺丝纤维素在二甲基乙酰胺/氯化锂溶剂中的溶液,制备了纤维素纳米粒子,并研究了静电纺丝条件和分子量对电纺纳米粒子平均粒径的影响。纤维素的静电纺丝在以下范围内进行,每个因素的范围分别为浓度=1-3wt%、电压=15-23kV、喷嘴-收集器距离=10-25cm 和进料速率=0.03-0.0875ml/h。最小的纳米粒子平均粒径约为 40nm。结果表明,降低溶液浓度和进料速率,以及增加喷嘴-收集器距离和施加电压,都会导致电纺纤维素纳米粒子的平均粒径减小。傅里叶变换红外分析证明,纤维素结构在静电纺丝过程后没有发生化学变化。根据 X 射线衍射(XRD)结果,与原纤维素粉末相比,纤维素纳米粒子的结晶度较低。XRD 结果还证明了电纺纳米粒子中不存在 LiCl 盐。

相似文献

1
Fabrication of cellulose nanoparticles through electrospraying.
IET Nanobiotechnol. 2018 Sep;12(6):807-813. doi: 10.1049/iet-nbt.2018.0044.
4
Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc.
Carbohydr Res. 2008 Apr 7;343(5):919-28. doi: 10.1016/j.carres.2008.01.035. Epub 2008 Feb 2.
5
Improvement and Characterization in Enzymatic Hydrolysis of Regenerated Wheat Straw Dissolved by LiCl/DMAc Solvent System.
Appl Biochem Biotechnol. 2017 Jan;181(1):177-191. doi: 10.1007/s12010-016-2206-5. Epub 2016 Aug 11.
6
Gallic Acid-Loaded Zein Nanoparticles by Electrospraying Process.
J Food Sci. 2019 Apr;84(4):818-831. doi: 10.1111/1750-3841.14486. Epub 2019 Feb 25.
7
[Preparation and spectrum properties of cellulose nanoparticles].
Guang Pu Xue Yu Guang Pu Fen Xi. 2010 Jul;30(7):1876-9.
8
Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate+DMAc solvent.
Int J Biol Macromol. 2015 Nov;81:1000-4. doi: 10.1016/j.ijbiomac.2015.09.058. Epub 2015 Sep 30.
9
Rapid microwave-assisted synthesis and characterization of cellulose-hydroxyapatite nanocomposites in N,N-dimethylacetamide solvent.
Carbohydr Res. 2010 May 27;345(8):1046-50. doi: 10.1016/j.carres.2010.03.004. Epub 2010 Mar 6.
10
Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions.
J Phys Chem B. 2014 Aug 7;118(31):9507-14. doi: 10.1021/jp506013c. Epub 2014 Jul 23.

引用本文的文献

1
Review on Electrospray Nanoparticles for Drug Delivery: Exploring Applications.
Polym Adv Technol. 2024 Jul;35(7). doi: 10.1002/pat.6507. Epub 2024 Jul 16.
2
Membrane Technological Pathways and Inherent Structure of Bacterial Cellulose Composites for Drug Delivery.
Bioengineering (Basel). 2021 Dec 22;9(1):3. doi: 10.3390/bioengineering9010003.
3
Electrosprayed Ultra-Thin Coating of Ethyl Cellulose on Drug Nanoparticles for Improved Sustained Release.
Nanomaterials (Basel). 2020 Sep 6;10(9):1758. doi: 10.3390/nano10091758.
5
Biocompatible biodegradable polycaprolactone/basil seed mucilage scaffold for cell culture.
IET Nanobiotechnol. 2018 Dec;12(8):1108-1113. doi: 10.1049/iet-nbt.2018.5071.

本文引用的文献

1
Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk.
Compr Rev Food Sci Food Saf. 2015 May;14(3):269-284. doi: 10.1111/1541-4337.12128. Epub 2015 Feb 17.
2
Green synthesis of silver nanoparticles with the Arial part of extract by antimicrobial analysis.
IET Nanobiotechnol. 2018 Jun;12(4):491-495. doi: 10.1049/iet-nbt.2017.0216.
3
Production and properties of electrosprayed sericin nanopowder.
Sci Technol Adv Mater. 2012 Jul 16;13(3):035010. doi: 10.1088/1468-6996/13/3/035010. eCollection 2012 Jun.
4
Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.
Carbohydr Polym. 2015 Sep 5;128:147-53. doi: 10.1016/j.carbpol.2015.04.027. Epub 2015 Apr 21.
5
Self-assembled nanostructured cellulose prepared by a dissolution and regeneration process using phosphoric acid as a solvent.
Carbohydr Polym. 2015 Jun 5;123:297-304. doi: 10.1016/j.carbpol.2015.01.055. Epub 2015 Feb 4.
8
Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions.
J Phys Chem B. 2014 Aug 7;118(31):9507-14. doi: 10.1021/jp506013c. Epub 2014 Jul 23.
9
Brief overview on cellulose dissolution/regeneration interactions and mechanisms.
Adv Colloid Interface Sci. 2015 Aug;222:502-8. doi: 10.1016/j.cis.2014.05.004. Epub 2014 May 28.
10
Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber.
Carbohydr Polym. 2012 Jun 20;89(2):340-5. doi: 10.1016/j.carbpol.2012.03.006. Epub 2012 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验