Suppr超能文献

PMLPR:一种基于推荐系统的新的亚细胞定位预测方法。

PMLPR: A novel method for predicting subcellular localization based on recommender systems.

机构信息

Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.

出版信息

Sci Rep. 2018 Aug 13;8(1):12006. doi: 10.1038/s41598-018-30394-w.

Abstract

The importance of protein subcellular localization problem is due to the importance of protein's functions in different cell parts. Moreover, prediction of subcellular locations helps to identify the potential molecular targets for drugs and has an important role in genome annotation. Most of the existing prediction methods assign only one location for each protein. But, since some proteins move between different subcellular locations, they can have multiple locations. In recent years, some multiple location predictors have been introduced. However, their performances are not accurate enough and there is much room for improvement. In this paper, we introduced a method, PMLPR, to predict locations for a protein. PMLPR predicts a list of locations for each protein based on recommender systems and it can properly overcome the multiple location prediction problem. For evaluating the performance of PMLPR, we considered six datasets RAT, FLY, HUMAN, Du et al., DBMLoc and Höglund. The performance of this algorithm is compared with six state-of-the-art algorithms, YLoc, WOLF-PSORT, prediction channel, MDLoc, Du et al. and MultiLoc2-HighRes. The results indicate that our proposed method is significantly superior on RAT and Fly proteins, and decent on HUMAN proteins. Moreover, on the datasets introduced by Du et al., DBMLoc and Höglund, PMLPR has comparable results. For the case study, we applied the algorithms on 8 proteins which are important in cancer research. The results of comparison with other methods indicate the efficiency of PMLPR.

摘要

蛋白质亚细胞定位问题之所以重要,是因为蛋白质在不同细胞部位的功能很重要。此外,亚细胞位置的预测有助于识别药物的潜在分子靶标,并在基因组注释中发挥重要作用。大多数现有的预测方法只为每个蛋白质分配一个位置。但是,由于一些蛋白质在不同的亚细胞位置之间移动,它们可以具有多个位置。近年来,已经引入了一些多位置预测器。然而,它们的性能还不够准确,还有很大的改进空间。在本文中,我们引入了一种方法 PMLPR,用于预测蛋白质的位置。PMLPR 基于推荐系统为每个蛋白质预测一组位置,它可以很好地克服多位置预测问题。为了评估 PMLPR 的性能,我们考虑了六个数据集 RAT、FLY、HUMAN、Du 等人、DBMLoc 和 Höglund。将该算法的性能与六个最先进的算法 YLoc、WOLF-PSORT、prediction channel、MDLoc、Du 等人和 MultiLoc2-HighRes 进行了比较。结果表明,我们提出的方法在 RAT 和 Fly 蛋白上表现优异,在 HUMAN 蛋白上表现尚可。此外,在 Du 等人、DBMLoc 和 Höglund 引入的数据集上,PMLPR 具有可比的结果。在案例研究中,我们将算法应用于 8 种在癌症研究中很重要的蛋白质。与其他方法的比较结果表明了 PMLPR 的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验