Department of Mathematics and Computer Science and Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy.
Bioinformatics. 2013 Aug 15;29(16):2004-8. doi: 10.1093/bioinformatics/btt307. Epub 2013 May 29.
The identification of drug-target interaction (DTI) represents a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Recently, recommendation methods relying on network-based inference (NBI) have been proposed. However, such approaches implement naive topology-based inference and do not take into account important features within the drug-target domain.
In this article, we present a new NBI method, called domain tuned-hybrid (DT-Hybrid), which extends a well-established recommendation technique by domain-based knowledge including drug and target similarity. DT-Hybrid has been extensively tested using the last version of an experimentally validated DTI database obtained from DrugBank. Comparison with other recently proposed NBI methods clearly shows that DT-Hybrid is capable of predicting more reliable DTIs.
DT-Hybrid has been developed in R and it is available, along with all the results on the predictions, through an R package at the following URL: http://sites.google.com/site/ehybridalgo/.
药物-靶点相互作用(DTI)的鉴定是药物发现和设计中既昂贵又耗时的步骤。能够预测可靠的 DTI 的计算方法在该领域中起着重要的作用。最近,已经提出了依赖于基于网络的推断(NBI)的推荐方法。然而,此类方法实施基于拓扑结构的简单推断,并且没有考虑药物-靶点领域内的重要特征。
在本文中,我们提出了一种新的 NBI 方法,称为基于领域的混合(DT-Hybrid),它通过包括药物和靶点相似性在内的基于领域的知识扩展了一种成熟的推荐技术。DT-Hybrid 已使用从 DrugBank 获取的最新版本的经过实验验证的 DTI 数据库进行了广泛的测试。与其他最近提出的 NBI 方法的比较清楚地表明,DT-Hybrid 能够预测更可靠的 DTI。
DT-Hybrid 是用 R 语言开发的,并且可以通过以下网址的 R 包获得:http://sites.google.com/site/ehybridalgo/,以及所有预测结果。