Al Sulaiman Dana, Cadinu Paolo, Ivanov Aleksandar P, Edel Joshua B, Ladame Sylvain
Nano Lett. 2018 Sep 12;18(9):6084-6093. doi: 10.1021/acs.nanolett.8b03111. Epub 2018 Aug 20.
Label-free, single-molecule sensing is anideal candidate for biomedical applications that rely on the detection of low copy numbers in small volumes and potentially complex biofluids. Among them, solid-state nanopores can be engineered to detect single molecules of charged analytes when they are electrically driven through the nanometer-sized aperture. When successfully applied to nucleic acid sensing, fast transport in the range of 10-100 nucleotides per nanosecond often precludes the use of standard nanopores for the detection of the smallest fragments. Herein, hydrogel-filled nanopores (HFN) are reported that combine quartz nanopipettes with biocompatible chemical poly(vinyl) alcohol hydrogels engineered in-house. Hydrogels were modified physically or chemically to finely tune, in a predictable manner, the transport of specific molecules. Controlling the hydrogel mesh size and chemical composition allowed us to slow DNA transport by 4 orders of magnitude and to detect fragments as small as 100 base pairs (bp) with nanopores larger than 20 nm at an ionic strength comparable to physiological conditions. Considering the emergence of cell-free nucleic acids as blood biomarkers for cancer diagnostics or prenatal testing, the successful sensing and size profiling of DNA fragments ranging from 100 bp to >1 kbp long under physiological conditions demonstrates the potential of HFNs as a new generation of powerful and easily tunable molecular diagnostics tools.
无标记单分子传感是生物医学应用的理想选择,这类应用依赖于在小体积且可能复杂的生物流体中检测低拷贝数。其中,固态纳米孔经过设计,当带电分析物在电驱动下通过纳米尺寸的孔径时,可检测其单分子。当成功应用于核酸传感时,每纳秒10 - 100个核苷酸的快速转运常常使标准纳米孔无法用于检测最小的片段。在此,报道了一种填充水凝胶的纳米孔(HFN),它将石英纳米吸管与内部设计的具有生物相容性的化学聚乙烯醇水凝胶相结合。通过物理或化学方法对水凝胶进行修饰,以可预测的方式精细调节特定分子的转运。控制水凝胶的网孔大小和化学组成使我们能够将DNA转运速度减慢4个数量级,并在与生理条件相当的离子强度下,用大于20 nm的纳米孔检测小至100个碱基对(bp)的片段。考虑到游离核酸作为癌症诊断或产前检测的血液生物标志物的出现,在生理条件下对100 bp至大于1 kbp长的DNA片段进行成功传感和大小分析,证明了HFN作为新一代强大且易于调节的分子诊断工具的潜力。