Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, Unites States.
J Phys Chem B. 2020 Aug 20;124(33):7138-7151. doi: 10.1021/acs.jpcb.0c04574. Epub 2020 Aug 6.
We present a class of pulsed third-spin-assisted recoupling (P-TSAR) magic-angle-spinning solid-state NMR techniques that achieve efficient polarization transfer over long distances to provide important restraints for structure determination. These experiments utilize second-order cross terms between strong H-C and H-N dipolar couplings to achieve C-C and N-C polarization transfer, similar to the principle of continuous-wave (CW) TSAR experiments. However, in contrast to the CW-TSAR experiments, these P-TSAR experiments require much less radiofrequency (rf) energy and allow a much simpler routine for optimizing the rf field strength. We call the technique PULSAR (pulsed proton-assisted recoupling) for homonuclear spin pairs. For heteronuclear spin pairs, we improve the recently introduced CP (proton-enhanced rotor-echo short pulse irradiation cross-polarization) experiment by shifting the pulse positions and removing the z-filters, which significantly broaden the bandwidth and increase the efficiency of polarization transfer. We demonstrate the PULSAR and CP techniques on the model protein GB1 and found cross peaks for distances as long as 10 and 8 Å for C-C and N-C spin pairs, respectively. We then apply these methods to the amyloid fibrils formed by the peptide hormone glucagon and show that long-range correlation peaks are readily observed to constrain intermolecular packing in this cross-β fibril. We provide an analytical model for the PULSAR and CP experiments to explain the measured and simulated chemical shift dependence and pulse flip angle dependence of polarization transfer. These two techniques are useful for measuring long-range distance restraints to determine the three-dimensional structures of proteins and other biological macromolecules.
我们提出了一类基于第三自旋辅助脉冲(P-TSAR)的魔角旋转固态 NMR 技术,这些技术可实现长距离高效极化转移,为结构确定提供重要约束。这些实验利用强 H-C 和 H-N 偶极耦合之间的二阶交叉项实现 C-C 和 N-C 极化转移,类似于连续波(CW)TSAR 实验的原理。然而,与 CW-TSAR 实验不同,这些 P-TSAR 实验需要的射频(rf)能量少得多,并且优化 rf 场强度的常规操作更简单。我们将该技术称为同核自旋对的 PULSAR(质子辅助再偶联)。对于异核自旋对,我们通过改变脉冲位置并去除 z 滤波器来改进最近引入的 CP(质子增强的转子回波短脉冲辐照交叉极化)实验,这显著拓宽了带宽并提高了极化转移效率。我们在模型蛋白 GB1 上演示了 PULSAR 和 CP 技术,发现 C-C 和 N-C 自旋对的距离分别长达 10 和 8 Å 时出现交叉峰。然后,我们将这些方法应用于由肽激素胰高血糖素形成的淀粉样原纤维,并表明可以很容易地观察到长程相关峰,以约束这种交叉-β原纤维中的分子间堆积。我们为 PULSAR 和 CP 实验提供了一个分析模型,以解释极化转移的测量和模拟化学位移依赖性和脉冲翻转角依赖性。这两种技术可用于测量长程距离约束,以确定蛋白质和其他生物大分子的三维结构。