Park Sung-Jin, Gazzola Mattia, Park Kyung Soo, Park Shirley, Di Santo Valentina, Blevins Erin L, Lind Johan U, Campbell Patrick H, Dauth Stephanie, Capulli Andrew K, Pasqualini Francesco S, Ahn Seungkuk, Cho Alexander, Yuan Hongyan, Maoz Ben M, Vijaykumar Ragu, Choi Jeong-Woo, Deisseroth Karl, Lauder George V, Mahadevan L, Parker Kevin Kit
Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Science. 2016 Jul 8;353(6295):158-62. doi: 10.1126/science.aaf4292.
Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we created a biohybrid system that enables an artificial animal--a tissue-engineered ray--to swim and phototactically follow a light cue. By patterning dissociated rat cardiomyocytes on an elastomeric body enclosing a microfabricated gold skeleton, we replicated fish morphology at 1/10 scale and captured basic fin deflection patterns of batoid fish. Optogenetics allows for phototactic guidance, steering, and turning maneuvers. Optical stimulation induced sequential muscle activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming. The speed and direction of the ray was controlled by modulating light frequency and by independently eliciting right and left fins, allowing the biohybrid machine to maneuver through an obstacle course.
受诸如黄貂鱼和鳐鱼等鲼形目鱼类相对简单的形态蓝图启发,我们创建了一个生物杂交系统,使一种人工动物——组织工程化的鳐鱼——能够游泳并通过光刺激跟随光线线索。通过在包裹着微制造金骨架的弹性体上对解离的大鼠心肌细胞进行图案化处理,我们按1/10比例复制了鱼类形态,并捕捉到了鲼形目鱼类的基本鳍偏转模式。光遗传学实现了光刺激引导、转向和转弯动作。光刺激通过蛇形图案的肌肉回路诱导顺序性肌肉激活,从而实现协调的波动式游泳。鳐鱼的速度和方向通过调节光频率以及独立激发左右鳍来控制,使这种生物杂交机器能够在障碍赛道中灵活穿梭。