Suppr超能文献

组织工程化软机器人射线的趋光引导

Phototactic guidance of a tissue-engineered soft-robotic ray.

作者信息

Park Sung-Jin, Gazzola Mattia, Park Kyung Soo, Park Shirley, Di Santo Valentina, Blevins Erin L, Lind Johan U, Campbell Patrick H, Dauth Stephanie, Capulli Andrew K, Pasqualini Francesco S, Ahn Seungkuk, Cho Alexander, Yuan Hongyan, Maoz Ben M, Vijaykumar Ragu, Choi Jeong-Woo, Deisseroth Karl, Lauder George V, Mahadevan L, Parker Kevin Kit

机构信息

Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Science. 2016 Jul 8;353(6295):158-62. doi: 10.1126/science.aaf4292.

Abstract

Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we created a biohybrid system that enables an artificial animal--a tissue-engineered ray--to swim and phototactically follow a light cue. By patterning dissociated rat cardiomyocytes on an elastomeric body enclosing a microfabricated gold skeleton, we replicated fish morphology at 1/10 scale and captured basic fin deflection patterns of batoid fish. Optogenetics allows for phototactic guidance, steering, and turning maneuvers. Optical stimulation induced sequential muscle activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming. The speed and direction of the ray was controlled by modulating light frequency and by independently eliciting right and left fins, allowing the biohybrid machine to maneuver through an obstacle course.

摘要

受诸如黄貂鱼和鳐鱼等鲼形目鱼类相对简单的形态蓝图启发,我们创建了一个生物杂交系统,使一种人工动物——组织工程化的鳐鱼——能够游泳并通过光刺激跟随光线线索。通过在包裹着微制造金骨架的弹性体上对解离的大鼠心肌细胞进行图案化处理,我们按1/10比例复制了鱼类形态,并捕捉到了鲼形目鱼类的基本鳍偏转模式。光遗传学实现了光刺激引导、转向和转弯动作。光刺激通过蛇形图案的肌肉回路诱导顺序性肌肉激活,从而实现协调的波动式游泳。鳐鱼的速度和方向通过调节光频率以及独立激发左右鳍来控制,使这种生物杂交机器能够在障碍赛道中灵活穿梭。

相似文献

7
Bio-inspired engineering. Manta machines.仿生工程。蝠鲼机器。
Science. 2011 May 27;332(6033):1028-9. doi: 10.1126/science.332.6033.1028.

引用本文的文献

6
A forward-engineered, muscle-driven soft robotic swimmer.一款正向设计的、由肌肉驱动的软体机器人游泳器。
Sci Adv. 2025 Jul 18;11(29):eadu8634. doi: 10.1126/sciadv.adu8634. Epub 2025 Jul 16.
9
Technology Roadmap of Micro/Nanorobots.微纳机器人技术路线图
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
10
The Morphological, Behavioral, and Transcriptomic Life Cycle of Anthrobots.拟人机器人的形态、行为和转录组生命周期
Adv Sci (Weinh). 2025 Aug;12(31):e2409330. doi: 10.1002/advs.202409330. Epub 2025 Jun 6.

本文引用的文献

1
Skating by: low energetic costs of swimming in a batoid fish.轻松滑行:一种鲼形目鱼类游泳时的低能量消耗
J Exp Biol. 2016 Jun 15;219(Pt 12):1804-7. doi: 10.1242/jeb.136358. Epub 2016 Apr 14.
2
Optogenetic skeletal muscle-powered adaptive biological machines.光遗传学骨骼肌驱动的自适应生物机器。
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3497-502. doi: 10.1073/pnas.1516139113. Epub 2016 Mar 14.
5
Design, fabrication and control of soft robots.软机器人的设计、制造与控制。
Nature. 2015 May 28;521(7553):467-75. doi: 10.1038/nature14543.
6
Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion.正交体波的调制使侧行运动具有高机动性。
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6200-5. doi: 10.1073/pnas.1418965112. Epub 2015 Mar 23.
7
Gait and speed selection in slender inertial swimmers.细长惯性游泳者的步态与速度选择
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3874-9. doi: 10.1073/pnas.1419335112. Epub 2015 Mar 13.
8
Structural phenotyping of stem cell-derived cardiomyocytes.干细胞来源心肌细胞的结构表型分析。
Stem Cell Reports. 2015 Mar 10;4(3):340-7. doi: 10.1016/j.stemcr.2015.01.020. Epub 2015 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验