Suppr超能文献

Calcium ionophore and chemotactic peptide stimulation of peptidoleukotriene synthesis in DMSO-differentiated HL60 cells.

作者信息

Anthes J C, Bryant R W, Musch M W, Ng K, Siegel M I

出版信息

Inflammation. 1986 Jun;10(2):145-56. doi: 10.1007/BF00915996.

Abstract

The human promyelocytic leukemia cell line HL60 can be differentiated to mature granulocytes upon exposure to DMSO (1.3%, 6 days). The ability of these cells to metabolize arachidonic acid via the 5-lipoxygenase pathway to form 5-HETE, LTB4, and 5,12-diHETEs, has been previously documented. However, the production of peptidoleukotrienes by DMSO-differentiated HL60 cells has not been previously reported. Arachidonic acid metabolites produced via 5-lipoxygenase were identified by reverse-phase, high-performance liquid chromatography, immunoreactivity specific for peptidoleukotriene, glutamyl transpeptidase transformation, characteristic UV spectra, and GC mass spectra. Leukotriene synthesis in the DMSO-differentiated HL60 cell is maximal at 5 min when stimulated with the calcium ioniphore, A23187 (1 microM), in the presence of calcium. These cells produce 12.94 +/- 1.8 ng/10(6) cells of LTC4 and 3.8 +/- 0.4 ng/10(6) cells of LTB4. LTC4 and LTB4 are also synthesized in the undifferentiated cell when stimulated with 1 microM A23187 and 1 mM Ca2+, but in much smaller quantities, i.e., 1.91 +/- 0.42 ng/10(6) cells of LTC4 and 0.41 ng +/- 0.06/10(6) cells of LTB4. The synthetic chemotactic peptide, f-Met-Leu-Phe, also elicits formation of LTC4 and LTB4 in a dose-dependent manner in the presence of exogenously added calcium. Maximal stimulation of DMSO-differentiated cells with f-Met-Leu-Phe produces 2.5 +/- 0.2 ng of LTC4 and 1.45 +/- 0.2 ng of LTB4 per 10(6) cells. The observation that DMSO-differentiated HL60 cells produce LTC4, as well as other 5-lipoxygenase products, increases the utility of this cell line for unraveling the regulation of leukotriene biosynthesis by granulocytes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验