Suppr超能文献

4-氨基喹啉化合物对氯喹敏感及氯喹耐药寄生虫株的抗疟活性研究。

Study of the antimalarial activity of 4-aminoquinoline compounds against chloroquine-sensitive and chloroquine-resistant parasite strains.

作者信息

Lawrenson Alexandre S, Cooper David L, O'Neill Paul M, Berry Neil G

机构信息

Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.

出版信息

J Mol Model. 2018 Aug 17;24(9):237. doi: 10.1007/s00894-018-3755-z.

Abstract

This study is concerned with identifying features of 4-aminoquinoline scaffolds that can help pinpoint characteristics that enhance activity against chloroquine-resistant parasites. Statistically valid predictive models are reported for a series of 4-aminoquinoline analogues that are active against chloroquine-sensitive (NF54) and chloroquine-resistant (K1) strains of Plasmodium falciparum. Quantitative structure activity relationship techniques, based on statistical and machine learning methods such as multiple linear regression and partial least squares, were used with a novel pruning method for the selection of descriptors to develop robust models for both strains. Inspection of the dominant descriptors supports the hypothesis that chemical features that enable accumulation in the food vacuole of the parasite are key determinants of activity against both strains. The hydrophilic properties of the compounds were found to be crucial in predicting activity against the chloroquine-sensitive NF54 parasite strain, but not in the case of the chloroquine-resistant K1 strain, in line with previous studies. Additionally, the models suggest that 'softer' compounds tend to have improved activity for both strains than do 'harder' ones. The internally and externally validated models reported here should also prove useful in the future screening of potential antimalarial compounds for targeting chloroquine-resistant strains. Graphical Abstract Predictive models reveal linear relationships for activity of 4-aminoquinoline analogues active against chloroquine-sensitive strains of Plasmodium falciparum.

摘要

本研究关注于确定4-氨基喹啉支架的特征,这些特征有助于明确增强对氯喹抗性寄生虫活性的特性。报告了针对一系列对恶性疟原虫氯喹敏感(NF54)和氯喹抗性(K1)菌株有活性的4-氨基喹啉类似物的具有统计学有效性的预测模型。基于多元线性回归和偏最小二乘法等统计和机器学习方法的定量构效关系技术,与一种用于选择描述符的新型剪枝方法一起使用,以开发针对这两种菌株的稳健模型。对主要描述符的检查支持了这样的假设,即能够在寄生虫食物泡中积累的化学特征是对这两种菌株活性的关键决定因素。与先前的研究一致,发现化合物的亲水性在预测对氯喹敏感的NF54寄生虫菌株的活性方面至关重要,但在氯喹抗性K1菌株的情况下并非如此。此外,模型表明,对于这两种菌株,“较软”的化合物往往比较“硬”的化合物具有更好的活性。本文报告的内部和外部验证模型在未来筛选针对氯喹抗性菌株的潜在抗疟化合物时也应会证明是有用的。图形摘要预测模型揭示了对恶性疟原虫氯喹敏感菌株有活性的4-氨基喹啉类似物活性的线性关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b623/6097041/66ae7ee236f2/894_2018_3755_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验