Suppr超能文献

多种数据支持丝状真菌模式生物向基因组学后时代的转变。

Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era.

作者信息

McCluskey Kevin, Baker Scott E

机构信息

Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.

Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.

出版信息

Mycology. 2017 Feb 17;8(2):67-83. doi: 10.1080/21501203.2017.1281849. eCollection 2017.

Abstract

Filamentous fungi have been important as model organisms since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycete filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Similarly, shared data has contributed to the success of model systems. The scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.

摘要

自现代生物学研究伊始,丝状真菌就一直作为模式生物发挥着重要作用,并且从最早的遗传图谱共享之时起就受益于开放数据。从早期简单的交配型孟德尔遗传学、菌落颜色的准性遗传学,以及营养需求分离的基础性证明开始,利用丝状真菌的研究系统所做的贡献贯穿了生化遗传学时代、分子遗传学时代,如今更是处于各种组学研发方法的核心基础。真菌模式生物来自大多数主要的分类群,尽管子囊菌纲丝状真菌得到了最为持久的大量研究。除了已发表的关于丝状真菌的材料外,共享的分子工具已在真菌生物学的各个领域得到应用。同样,共享数据也推动了模式系统的成功。支持丝状真菌研究的数据规模已经增长了10到12个数量级。从遗传图谱到分子图谱、表达数据库,再到最后的基因组资源,研究群体的开放与合作性质确保了数据洪流将所有研究系统一同托起。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51de/6059044/f84daf7d7cf8/TMYC_A_1281849_F0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验