Suppr超能文献

使用深度卷积神经网络对乳腺放射科医生的视觉搜索行为进行建模。

Modeling visual search behavior of breast radiologists using a deep convolution neural network.

作者信息

Mall Suneeta, Brennan Patrick C, Mello-Thoms Claudia

机构信息

University of Sydney, Faculty of Health Sciences, Medical Image Optimisation and Perception Research Group (MIOPeG), Lidcombe, New South Wales, Australia.

出版信息

J Med Imaging (Bellingham). 2018 Jul;5(3):035502. doi: 10.1117/1.JMI.5.3.035502. Epub 2018 Aug 11.

Abstract

Visual search, the process of detecting and identifying objects using eye movements (saccades) and foveal vision, has been studied for identification of root causes of errors in the interpretation of mammograms. The aim of this study is to model visual search behavior of radiologists and their interpretation of mammograms using deep machine learning approaches. Our model is based on a deep convolutional neural network, a biologically inspired multilayer perceptron that simulates the visual cortex and is reinforced with transfer learning techniques. Eye-tracking data were obtained from eight radiologists (of varying experience levels in reading mammograms) reviewing 120 two-view digital mammography cases (59 cancers), and it has been used to train the model, which was pretrained with the ImageNet dataset for transfer learning. Areas of the mammogram that received direct (foveally fixated), indirect (peripherally fixated), or no (never fixated) visual attention were extracted from radiologists' visual search maps (obtained by a head mounted eye-tracking device). These areas along with the radiologists' assessment (including confidence in the assessment) of the presence of suspected malignancy were used to model: (1) radiologists' decision, (2) radiologists' confidence in such decisions, and (3) the attentional level (i.e., foveal, peripheral, or none) in an area of the mammogram. Our results indicate high accuracy and low misclassification in modeling such behaviors.

摘要

视觉搜索是指利用眼球运动(扫视)和中央凹视觉来检测和识别物体的过程,该过程已被用于研究乳房X光片解读错误的根本原因。本研究的目的是使用深度机器学习方法对放射科医生的视觉搜索行为及其对乳房X光片的解读进行建模。我们的模型基于深度卷积神经网络,这是一种受生物启发的多层感知器,模拟视觉皮层,并通过迁移学习技术进行强化。从八位放射科医生(具有不同的乳房X光片阅读经验水平)那里获取了眼动追踪数据,他们对120例双视图数字乳房X光片病例(其中59例为癌症病例)进行了检查,这些数据已用于训练该模型,该模型使用ImageNet数据集进行预训练以进行迁移学习。从放射科医生的视觉搜索图(通过头戴式眼动追踪设备获得)中提取乳房X光片中受到直接(中央凹注视)、间接(周边注视)或未受到(从未注视)视觉关注的区域。这些区域以及放射科医生对疑似恶性肿瘤存在情况的评估(包括评估的置信度)被用于对以下内容进行建模:(1)放射科医生的决策,(2)放射科医生对这些决策的置信度,以及(3)乳房X光片某一区域的注意力水平(即中央凹、周边或无)。我们的结果表明,在对这些行为进行建模时具有高准确性和低错误分类率。

相似文献

4
Visual search in breast imaging.乳腺影像学中的视觉搜索。
Br J Radiol. 2019 Oct;92(1102):20190057. doi: 10.1259/bjr.20190057. Epub 2019 Jul 18.
9
A review of factors influencing radiologists' visual search behaviour.影响放射科医生视觉搜索行为的因素综述。
J Med Imaging Radiat Oncol. 2018 Dec;62(6):747-757. doi: 10.1111/1754-9485.12798. Epub 2018 Sep 10.

引用本文的文献

2
The Use of Machine Learning in Eye Tracking Studies in Medical Imaging: A Review.机器学习在医学成像眼动研究中的应用:综述。
IEEE J Biomed Health Inform. 2024 Jun;28(6):3597-3612. doi: 10.1109/JBHI.2024.3371893. Epub 2024 Jun 6.
3
Contributions of global and local processing on medical image perception.全局和局部处理对医学图像感知的作用。
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S11911. doi: 10.1117/1.JMI.10.S1.S11911. Epub 2023 May 8.

本文引用的文献

7
The perception of breast cancers--a spatial frequency analysis of what differentiates missed from reported cancers.
IEEE Trans Med Imaging. 2003 Oct;22(10):1297-306. doi: 10.1109/TMI.2003.817784.
9
Covert attention accelerates the rate of visual information processing.隐蔽注意可加快视觉信息处理的速度。
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5363-7. doi: 10.1073/pnas.081074098. Epub 2001 Apr 17.
10
The false-negative mammogram.乳腺钼靶检查假阴性
Radiographics. 1998 Sep-Oct;18(5):1137-54; quiz 1243-4. doi: 10.1148/radiographics.18.5.9747612.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验