Suppr超能文献

用于基因网络的自举时间序列基因表达数据:在基因相关网络中的应用。

Bootstrapping Time-Course Gene Expression Data for Gene Networks: Application to Gene Relevance Networks.

作者信息

Garren Jeonifer M, Kim Jaejik

机构信息

BERG Health, Framingham, Massachusetts.

Department of Statistics, Sungkyunkwan University, Seoul, Korea.

出版信息

J Comput Biol. 2018 Dec;25(12):1374-1384. doi: 10.1089/cmb.2018.0029. Epub 2018 Aug 22.

Abstract

Identification of gene regulatory networks (GRNs) is a fundamental step to understand the molecular role of each gene and it helps to develop treatment and cure of a disease. To identify GRNs, time-course gene expression data are widely used. However, the identification is hampered by intrinsic attributes of the data such as small sample size, a large number of variables, and complex error structures with high variation. Under this situation, most GRN inference methods utilize point estimators or make numerous assumptions that are often incompatible with the experimental data. Moreover, different inference methods often provide inconsistent results. An alternative to alleviate this problem can be the bootstrap method because it provides more reliable outcomes by integrating results from multiple bootstrap samples without any distributional assumptions. In this study, we propose a bootstrap method for dependent time-course gene expression data and we mainly focus on its application to gene relevance networks. The proposed method is applied to gene networks for zebrafish retina.

摘要

基因调控网络(GRNs)的识别是理解每个基因分子作用的基本步骤,有助于疾病的治疗与治愈。为了识别基因调控网络,时间序列基因表达数据被广泛使用。然而,数据的内在属性,如样本量小、变量数量多以及具有高变异性的复杂误差结构,阻碍了识别过程。在这种情况下,大多数基因调控网络推理方法使用点估计器或做出许多往往与实验数据不兼容的假设。此外,不同的推理方法常常给出不一致的结果。缓解这一问题的一种替代方法是自助法,因为它通过整合多个自助样本的结果而无需任何分布假设,从而提供更可靠的结果。在本研究中,我们提出了一种用于相关时间序列基因表达数据的自助法,并且我们主要关注其在基因关联网络中的应用。所提出的方法应用于斑马鱼视网膜的基因网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验