Kim Yoonji, Kim Jaejik
Department of Statistics, Sungkyunkwan University , Seoul, Korea.
J Comput Biol. 2018 Sep;25(9):987-996. doi: 10.1089/cmb.2018.0062. Epub 2018 Jun 15.
Dynamic system consisting of ordinary differential equations (ODEs) is a well-known tool for describing dynamic nature of gene regulatory networks (GRNs), and the dynamic features of GRNs are usually captured through time-course gene expression data. Owing to high-throughput technologies, time-course gene expression data have complex structures such as heteroscedasticity, correlations between genes, and time dependence. Since gene experiments typically yield highly noisy data with small sample size, for a more accurate prediction of the dynamics, the complex structures should be taken into account in ODE models. Hence, this study proposes an ODE model considering such data structures and a fast and stable estimation method for the ODE parameters based on the generalized profiling approach with data smoothing techniques. The proposed method also provides statistical inference for the ODE estimator and it is applied to a zebrafish retina cell network.
由常微分方程(ODEs)组成的动态系统是描述基因调控网络(GRNs)动态特性的一种众所周知的工具,而GRNs的动态特征通常通过时间序列基因表达数据来捕捉。由于高通量技术的发展,时间序列基因表达数据具有复杂的结构,如异方差性、基因之间的相关性以及时间依赖性。由于基因实验通常会产生样本量小且噪声高的数据,为了更准确地预测动态,在ODE模型中应考虑这些复杂结构。因此,本研究提出了一种考虑此类数据结构的ODE模型,以及一种基于带有数据平滑技术的广义轮廓分析方法的ODE参数快速稳定估计方法。所提出的方法还为ODE估计器提供了统计推断,并将其应用于斑马鱼视网膜细胞网络。