From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and.
Department of Molecular Physiology and Biophysics.
J Biol Chem. 2018 Oct 12;293(41):16102-16114. doi: 10.1074/jbc.RA118.005066. Epub 2018 Aug 23.
The transient receptor potential ion channels support Ca permeation in many organs, including the heart, brain, and kidney. Genetic mutations in transient receptor potential cation channel subfamily C member 3 (TRPC3) are associated with neurodegenerative diseases, memory loss, and hypertension. To better understand the conformational changes that regulate TRPC3 function, we solved the cryo-EM structures for the full-length human TRPC3 and its cytoplasmic domain (CPD) in the apo state at 5.8- and 4.0-Å resolution, respectively. These structures revealed that the TRPC3 transmembrane domain resembles those of other TRP channels and that the CPD is a stable module involved in channel assembly and gating. We observed the presence of a C-terminal domain swap at the center of the CPD where horizontal helices (HHs) transition into a coiled-coil bundle. Comparison of TRPC3 structures revealed that the HHs can reside in two distinct positions. Electrophysiological analyses disclosed that shortening the length of the C-terminal loop connecting the HH with the TRP helices increases TRPC3 activity and that elongating the length of the loop has the opposite effect. Our findings indicate that the C-terminal loop affects channel gating by altering the allosteric coupling between the cytoplasmic and transmembrane domains. We propose that molecules that target the HH may represent a promising strategy for controlling TRPC3-associated neurological disorders and hypertension.
瞬时受体电位离子通道支持包括心脏、大脑和肾脏在内的许多器官中的 Ca 渗透。瞬时受体电位阳离子通道亚家族 C 成员 3(TRPC3)中的基因突变与神经退行性疾病、记忆丧失和高血压有关。为了更好地理解调节 TRPC3 功能的构象变化,我们分别以 5.8 和 4.0 Å 的分辨率解析了全长人 TRPC3 及其细胞质结构域(CPD)的无配体冷冻电镜结构。这些结构表明,TRPC3 的跨膜结构域类似于其他 TRP 通道,而 CPD 是一个稳定的模块,参与通道组装和门控。我们观察到 CPD 中心存在 C 端结构域交换,其中水平螺旋(HH)转变为卷曲螺旋束。TRPC3 结构的比较表明,HH 可以位于两个不同的位置。电生理分析表明,缩短连接 HH 和 TRP 螺旋的 C 端环的长度会增加 TRPC3 的活性,而延长环的长度则会产生相反的效果。我们的研究结果表明,C 端环通过改变细胞质和跨膜结构域之间的变构偶联来影响通道门控。我们提出,靶向 HH 的分子可能代表控制与 TRPC3 相关的神经紊乱和高血压的有前途的策略。