Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul, 121-742, Republic of Korea.
Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea.
Small. 2018 Sep;14(38):e1802934. doi: 10.1002/smll.201802934. Epub 2018 Aug 23.
For the first time, topological insulator bismuth selenide nanoparticles (Bi Se NP) are core-shelled with gold (Au@Bi Se ) i) to represent considerably small-sized (11 nm) plasmonic nanoparticles, enabling accurate bioimaging in the near-infrared region; ii) to substantially improve Bi Se biocompatibility, iii) water dispersibility, and iv) surface functionalization capability through straightforward gold-thiol interaction. The Au@Bi Se is subsequently functionalized for v) effective targeting of SH-SY5Y cancer cells, vi) disrupting the endosome/lysosome membrane, vii) traceable delivery of antagomiR-152 and further synergetic oncomiR knockdown and photothermal therapy (PTT). Unprecedentedly, it is observed that the Au shell thickness has a significant impact on evoking the exotic plasmonic features of Bi Se . The Au@Bi Se possesses a high photothermal conversion efficiency (35.5%) and a remarkable surface plasmonic effect (both properties are approximately twofold higher than those of 50 nm Au nanoparticles). In contrast to the siRNA/miRNA delivery methods, the antagomiR delivery is based on strand displacement, in which the antagomiR-152 is displaced by oncomiR-152 followed by a surface-enhanced Raman spectroscopy signal drop. This enables both cancer cell diagnosis and in vitro real-time monitoring of the antagomiR release. This selective PTT nanoparticle can also efficiently target solid tumors and undergo in vivo PTT, indicating its potential clinical applications.
首次将拓扑绝缘体硒化铋纳米粒子(Bi Se NP)进行核壳化,用金(Au@Bi Se)包裹,其目的是:i)代表相当小尺寸(11nm)的等离子体纳米粒子,使近红外区域的精确生物成像成为可能;ii)通过金-硫醇相互作用,极大地提高 Bi Se 的生物相容性、iii)水分散性和 iv)表面功能化能力。随后对 Au@Bi Se 进行 v)有效靶向 SH-SY5Y 癌细胞、vi)破坏内体/溶酶体膜、vii)追踪抗 miRNA-152 的传递以及进一步协同抑制致癌 miRNA 和光热治疗(PTT)的功能化处理。前所未有的是,观察到 Au 壳厚度对激发 Bi Se 的奇异等离子体特性有显著影响。Au@Bi Se 具有高的光热转换效率(35.5%)和显著的表面等离子体效应(这两种特性大约是 50nm Au 纳米粒子的两倍)。与 siRNA/miRNA 传递方法不同,抗 miRNA 的传递基于链置换,其中抗 miRNA-152 被致癌 miRNA-152 取代,随后表面增强拉曼光谱信号下降。这使得既能对癌细胞进行诊断,又能对体内抗 miRNA 释放进行实时监测。这种选择性 PTT 纳米粒子还可以有效地靶向实体瘤并进行体内 PTT,表明其具有潜在的临床应用。