Donostia International Physics Center (DIPC), Manuel Lardizábal 4, 20018, San Sebastián, Spain.
Centro de Física de Materiales (CSIC-UPV/EHU), Manuel Lardizábal 5, 20018, San Sebastián, Spain.
Nat Commun. 2018 Aug 24;9(1):3401. doi: 10.1038/s41467-018-05672-w.
Transition metal dichalcogenide materials are unique in the wide variety of structural and electronic phases they exhibit in the two-dimensional limit. Here we show how such polymorphic flexibility can be used to achieve topological states at highly ordered phase boundaries in a new quantum spin Hall insulator (QSHI), 1T'-WSe. We observe edge states at the crystallographically aligned interface between a quantum spin Hall insulating domain of 1T'-WSe and a semiconducting domain of 1H-WSe in contiguous single layers. The QSHI nature of single-layer 1T'-WSe is verified using angle-resolved photoemission spectroscopy to determine band inversion around a 120 meV energy gap, as well as scanning tunneling spectroscopy to directly image edge-state formation. Using this edge-state geometry we confirm the predicted penetration depth of one-dimensional interface states into the two-dimensional bulk of a QSHI for a well-specified crystallographic direction. These interfaces create opportunities for testing predictions of the microscopic behavior of topologically protected boundary states.
过渡金属二卤化物材料在二维极限下表现出多种多样的结构和电子相,这在它们中是独一无二的。在这里,我们展示了这种多态灵活性如何在一种新的量子自旋霍尔绝缘体 (QSHI) 1T'-WSe 中用于在高度有序的相界处实现拓扑状态。我们在量子自旋霍尔绝缘畴的结晶对准界面处观察到边缘态 1T'-WSe 和连续单层的半导体畴 1H-WSe 之间。通过角分辨光发射光谱确定围绕 120 meV 能隙的能带反转,以及扫描隧道光谱直接成像边缘态形成,验证了单层 1T'-WSe 的 QSHI 性质。使用这种边缘态几何形状,我们根据特定的晶体学方向确认了一维界面态进入 QSHI 二维体的预测穿透深度。这些界面为测试拓扑保护边界态的微观行为的预测提供了机会。