Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
Science. 2018 Jan 5;359(6371):76-79. doi: 10.1126/science.aan6003.
A variety of monolayer crystals have been proposed to be two-dimensional topological insulators exhibiting the quantum spin Hall effect (QSHE), possibly even at high temperatures. Here we report the observation of the QSHE in monolayer tungsten ditelluride (WTe) at temperatures up to 100 kelvin. In the short-edge limit, the monolayer exhibits the hallmark transport conductance, ~/ per edge, where is the electron charge and is Planck's constant. Moreover, a magnetic field suppresses the conductance, and the observed Zeeman-type gap indicates the existence of a Kramers degenerate point and the importance of time-reversal symmetry for protection from elastic backscattering. Our results establish the QSHE at temperatures much higher than in semiconductor heterostructures and allow for exploring topological phases in atomically thin crystals.
多种单层晶体被提议为二维拓扑绝缘体,表现出量子自旋霍尔效应(QSHE),甚至可能在高温下也是如此。在这里,我们报告了在单层二碲化钨(WTe)中观察到的量子自旋霍尔效应,温度高达 100 开尔文。在短边极限下,单层表现出标志性的输运电导率,~ / 边缘,其中 是电子电荷, 是普朗克常数。此外,磁场抑制了电导率,观察到的塞曼型能隙表明存在一个克喇末简并点,以及时间反演对称性对于防止弹性背散射的重要性。我们的结果在比半导体异质结构高得多的温度下确立了量子自旋霍尔效应,并允许在原子层薄晶体中探索拓扑相。