Gedamu Dawit, Asuo Ivy M, Benetti Daniele, Basti Matteo, Ka Ibrahima, Cloutier Sylvain G, Rosei Federico, Nechache Riad
École de technologie supérieure (ÉTS), Department of Electrical Engineering, 1100 rue Notre-Dame Ouest, Montréal, (QC), H3C 1K3, Canada.
INRS-EMT Centre for Energy, Materials and Telecommunication, 1650 Boul. Lionel Boulet, Varennes, (QC), J3X 1S2, Canada.
Sci Rep. 2018 Aug 27;8(1):12885. doi: 10.1038/s41598-018-31184-0.
In recent years, hybrid organic-inorganic halide perovskites have been widely studied for the low-cost fabrication of a wide range of optoelectronic devices, including impressive perovskite-based solar cells. Amongst the key factors influencing the performance of these devices, recent efforts have focused on tailoring the granularity and microstructure of the perovskite films. Albeit, a cost-effective technique allowing to carefully control their microstructure in ambient environmental conditions has not been realized. We report on a solvent-antisolvent ambient processed CHNHPbICl based thin films using a simple and robust solvent engineering technique to achieve large grains (>5 µm) having excellent crystalline quality and surface coverage with very low pinhole density. Using optimized treatment (75% chlorobenzene and 25% ethanol), we achieve highly-compact perovskite films with 99.97% surface coverage to produce solar cells with power conversion efficiencies (PCEs) up-to 14.0%. In these planar solar cells, we find that the density and size of the pinholes are the dominant factors that affect their overall performances. This work provides a promising solvent treatment technique in ambient conditions and paves the way for further optimization of large area thin films and high performance perovskite solar cells.
近年来,有机-无机卤化物杂化钙钛矿因其可低成本制造包括令人印象深刻的钙钛矿基太阳能电池在内的各种光电器件而受到广泛研究。在影响这些器件性能的关键因素中,近期的研究重点在于调整钙钛矿薄膜的粒度和微观结构。然而,尚未实现一种能在环境条件下精确控制其微观结构的经济高效技术。我们报道了一种基于溶剂-反溶剂环境处理的CHNHPbICl薄膜,采用简单且稳健的溶剂工程技术,以获得具有优异晶体质量和表面覆盖率、针孔密度极低的大晶粒(>5 µm)。通过优化处理(75%氯苯和25%乙醇),我们获得了表面覆盖率达99.97%的高度致密钙钛矿薄膜,从而制备出功率转换效率(PCE)高达14.0%的太阳能电池。在这些平面太阳能电池中,我们发现针孔的密度和尺寸是影响其整体性能的主要因素。这项工作提供了一种在环境条件下颇具前景的溶剂处理技术,并为大面积薄膜和高性能钙钛矿太阳能电池的进一步优化铺平了道路。