Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9110-9115. doi: 10.1073/pnas.1807750115. Epub 2018 Aug 28.
A classic paradigm of soft and extensible polymer materials is the difficulty of combining reversible elasticity with high fracture toughness, in particular for moduli above 1 MPa. Our recent discovery of multiple network acrylic elastomers opened a pathway to obtain precisely such a combination. We show here that they can be seen as true molecular composites with a well-cross-linked network acting as a percolating filler embedded in an extensible matrix, so that the stress-strain curves of a family of molecular composite materials made with different volume fractions of the same cross-linked network can be renormalized into a master curve. For low volume fractions (<3%) of cross-linked network, we demonstrate with mechanoluminescence experiments that the elastomer undergoes a strong localized softening due to scission of covalent bonds followed by a stable necking process, a phenomenon never observed before in elastomers. The quantification of the emitted luminescence shows that the damage in the material occurs in two steps, with a first step where random bond breakage occurs in the material accompanied by a moderate level of dissipated energy and a second step where a moderate level of more localized bond scission leads to a much larger level of dissipated energy. This combined use of mechanical macroscopic testing and molecular bond scission data provides unprecedented insight on how tough soft materials can damage and fail.
软而可延展聚合物材料的一个经典范例是难以将弹性与高断裂韧性结合起来,尤其是在模量高于 1 MPa 的情况下。我们最近发现的多种网络丙烯酸弹性体为获得这种精确的结合开辟了一条途径。我们在这里表明,它们可以被视为真正的分子复合材料,其中交联网络作为一种渗透填充剂嵌入在可延展基质中,因此由相同交联网络的不同体积分数制成的一系列分子复合材料的应力-应变曲线可以被重归一化为一条主曲线。对于交联网络的低体积分数(<3%),我们通过力学发光实验证明,弹性体由于共价键的断裂而经历强烈的局部软化,随后是稳定的颈缩过程,这是以前在弹性体中从未观察到的现象。发光的量化表明,材料中的损伤分两个步骤发生,第一步是材料中随机键断裂,伴随着适度的能量耗散,第二步是适度的更局部键断裂导致更大的能量耗散。这种机械宏观测试和分子键断裂数据的综合使用为我们提供了前所未有的见解,了解坚韧的软材料如何发生损伤和失效。