Department of Medicine, Stony Brook University, Stony Brook, NY.
Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany.
J Lipid Res. 2018 Nov;59(11):2126-2139. doi: 10.1194/jlr.M088195. Epub 2018 Aug 28.
The generation of most sphingolipids (SPLs) starts with condensation between serine and an activated long-chain fatty acid catalyzed by serine palmitoyltransferase (SPT). SPT can also use other amino acids to generate small quantities of noncanonical SPLs. The balance between serine-derived and noncanonical SPLs is pivotal; for example, hereditary sensory and autonomic neuropathy type I results from SPT mutations that cause an abnormal accumulation of alanine-derived SPLs. The regulatory mechanism for SPT amino acid selectivity and physiological functions of noncanonical SPLs are unknown. We investigated SPT selection of amino acid substrates by measuring condensation products of serine and alanine in yeast cultures and SPT use of serine and alanine in a knockout model. We identified the Tsc3 subunit of SPT as a regulator of amino acid substrate selectivity by demonstrating its primary function in promoting alanine utilization by SPT and confirmed its requirement for the inhibitory effect of alanine on SPT utilization of serine. Moreover, we observed downstream metabolic consequences to Tsc3 loss: serine influx into the SPL biosynthesis pathway increased through Ypk1-depenedent activation of SPT and ceramide synthases. This Ypk1-dependent activation of serine influx after Tsc3 knockout suggests a potential function for deoxy-sphingoid bases in modulating Ypk1 signaling.
大多数神经酰胺(SPLs)的生成始于丝氨酸与丝氨酸棕榈酰转移酶(SPT)催化的活化长链脂肪酸之间的缩合。SPT 也可以使用其他氨基酸生成少量非典型 SPL。丝氨酸衍生的 SPL 和非典型 SPL 之间的平衡至关重要;例如,遗传性感觉和自主神经病 I 型是由 SPT 突变引起的,导致异常积累丙氨酸衍生的 SPL。SPT 氨基酸选择性的调节机制和非典型 SPL 的生理功能尚不清楚。我们通过测量酵母培养物中丝氨酸和丙氨酸的缩合产物以及在敲除模型中 SPT 对丝氨酸和丙氨酸的利用来研究 SPT 对氨基酸底物的选择。我们确定 SPT 的 Tsc3 亚基是氨基酸底物选择性的调节剂,通过证明其主要功能是促进 SPT 和丙氨酸的利用,并证实其对丙氨酸抑制 SPT 利用丝氨酸的要求。此外,我们观察到 Tsc3 缺失后的下游代谢后果:通过 Ypk1 依赖性激活 SPT 和神经酰胺合酶,丝氨酸流入 SPL 生物合成途径增加。Tsc3 敲除后 Ypk1 依赖性丝氨酸流入的激活表明脱氧鞘氨醇碱基在调节 Ypk1 信号传导方面可能具有功能。