Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
Howard Hughes Medical Institute, West Haven, Connecticut, USA.
mBio. 2018 Aug 28;9(4):e01393-18. doi: 10.1128/mBio.01393-18.
Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1 and Nox2 mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5 macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting infection. Using an avirulent strain of , we highlight the importance of Nox complexes in conferring protection against parasite infection both and We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.
吞噬细胞是抵御细胞内病原体的先天防御的第一道防线,但 却以其在巨噬细胞中存活的能力而闻名,尽管这一范式是基于毒力强的 I 型寄生虫。令人惊讶的是,我们发现无毒性 III 型寄生虫在幼稚巨噬细胞中被优先清除,而与 γ干扰素(IFN-γ)的激活无关。幼稚巨噬细胞清除 III 型寄生虫的能力依赖于 NADPH 氧化酶(Nox)产生的活性氧物种(ROS)和诱导的鸟嘌呤结合蛋白 5(Gbp5)的增强活性。感染 III 型寄生虫(CTG 株)的巨噬细胞显示出 ROS 生成的时间依赖性增加,高于 I 型寄生虫(GT1 株)诱导的 ROS 生成。Nox 复合物的 gp91 亚基同工型 Nox1 或 Nox2 的缺失,逆转了 CTG 寄生虫的 ROS 介导的清除。这一发现与 Nox1 和 Nox2 小鼠比野生型小鼠更容易感染 CTG 的情况一致。此外,在感染后诱导 Gbp5 表达,并逆转了 CTG 株寄生虫的增强清除。在 CTG 中表达 I 型 ROP18 等位基因可防止在幼稚巨噬细胞中清除,表明它在拮抗 Gbp5 方面发挥作用。尽管 ROS 和 Gbp5 与 NLRP3 炎性小体的激活有关,但 CTG 寄生虫的清除并不依赖于细胞焦亡的诱导。总的来说,这些发现揭示了并非所有的 株都擅长在巨噬细胞中逃避清除,并确定了 ROS 和 Gbps 在控制这种重要的细胞内病原体方面的新作用。人类和其他哺乳动物的 感染在很大程度上受到激活的适应性免疫系统产生的 IFN-γ的控制。然而,我们仍然不完全了解细胞内在功能在控制 或其他顶复门感染中的作用。本工作鉴定了幼稚巨噬细胞中对抗 感染的内在活性。使用一种无毒性的 株,我们强调了 Nox 复合物在赋予对抗寄生虫感染的保护方面的重要性,无论是 和 我们还确定 Gbp5 是一种新的巨噬细胞因子,它参与限制无毒性株 的细胞内感染。罕见的 III 型人类感染表明,这些机制在控制人类弓形体病方面也可能很重要。这些发现进一步扩展了我们对宿主反应和防御机制的理解,这些机制在细胞水平上起到控制寄生虫感染的作用。