Netherlands eScience Center, Amsterdam, The Netherlands.
INSERM U1018, Centre for Research in Epidemiology and Population Health, Université Paris-Saclay, Paris, France.
Sci Rep. 2018 Aug 28;8(1):12975. doi: 10.1038/s41598-018-31266-z.
Wrist worn raw-data accelerometers are used increasingly in large-scale population research. We examined whether sleep parameters can be estimated from these data in the absence of sleep diaries. Our heuristic algorithm uses the variance in estimated z-axis angle and makes basic assumptions about sleep interruptions. Detected sleep period time window (SPT-window) was compared against sleep diary in 3752 participants (range = 60-82 years) and polysomnography in sleep clinic patients (N = 28) and in healthy good sleepers (N = 22). The SPT-window derived from the algorithm was 10.9 and 2.9 minutes longer compared with sleep diary in men and women, respectively. Mean C-statistic to detect the SPT-window compared to polysomnography was 0.86 and 0.83 in clinic-based and healthy sleepers, respectively. We demonstrated the accuracy of our algorithm to detect the SPT-window. The value of this algorithm lies in studies such as UK Biobank where a sleep diary was not used.
腕部原始数据加速度计在大规模人群研究中越来越多地被使用。我们研究了在没有睡眠日记的情况下,这些数据是否可以用来估计睡眠参数。我们的启发式算法利用估计的 z 轴角度的方差,并对睡眠中断做出基本假设。在 3752 名参与者(年龄范围为 60-82 岁)中,将检测到的睡眠时间段时间窗口(SPT 窗口)与睡眠日记进行比较,并在睡眠诊所患者(N=28)和健康的良好睡眠者(N=22)中进行比较。与女性相比,该算法得出的 SPT 窗口分别比睡眠日记长 10.9 和 2.9 分钟。与基于诊所的健康睡眠者的多导睡眠图相比,检测 SPT 窗口的平均 C 统计量分别为 0.86 和 0.83。我们证明了我们的算法检测 SPT 窗口的准确性。该算法的价值在于像英国生物银行这样的研究中,没有使用睡眠日记。