Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America.
Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America.
PLoS Biol. 2018 Aug 29;16(8):e2005817. doi: 10.1371/journal.pbio.2005817. eCollection 2018 Aug.
Over the last decade, multiple broadly neutralizing monoclonal antibodies (bN-mAbs) to the HIV-1 envelope protein (Env) gp120 have been described. Many of these recognize epitopes consisting of both amino acid and glycan residues. Moreover, the glycans required for binding of these bN-mAbs are early intermediates in the N-linked glycosylation pathway. This type of glycosylation substantially alters the mass and net charge of Envs compared to molecules with the same amino acid sequence but possessing mature, complex (sialic acid-containing) carbohydrates. Since cell lines suitable for biopharmaceutical production that limit N-linked glycosylation to mannose-5 (Man5) or earlier intermediates are not readily available, the production of vaccine immunogens displaying these glycan-dependent epitopes has been challenging. Here, we report the development of a stable suspension-adapted Chinese hamster ovary (CHO) cell line that limits glycosylation to Man5 and earlier intermediates. This cell line was created using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system and contains a mutation that inactivates the gene encoding Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,2-N-Acetylglucosaminyltransferase (MGAT1). Monomeric gp120s produced in the MGAT1- CHO cell line exhibit improved binding to prototypic glycan-dependent bN-mAbs directed to the V1/V2 domain (e.g., PG9) and the V3 stem (e.g., PGT128 and 10-1074) while preserving the structure of the important glycan-independent epitopes (e.g., VRC01). The ability of the MGAT1- CHO cell line to limit glycosylation to early intermediates in the N-linked glycosylation pathway without impairing the doubling time or ability to grow at high cell densities suggests that it will be a useful substrate for the biopharmaceutical production of HIV-1 vaccine immunogens.
在过去的十年中,已经描述了多种针对 HIV-1 包膜蛋白 (Env) gp120 的广谱中和单克隆抗体 (bN-mAb)。其中许多抗体识别由氨基酸和聚糖残基组成的表位。此外,这些 bN-mAb 结合所需的聚糖是 N-连接糖基化途径中的早期中间体。与具有相同氨基酸序列但具有成熟、复杂(含唾液酸)碳水化合物的分子相比,这种类型的糖基化会极大地改变 Env 的质量和净电荷。由于不易获得适合生物制药生产的细胞系,这些细胞系将 N-连接糖基化限制在甘露糖-5(Man5)或更早的中间体,因此生产显示这些糖依赖性表位的疫苗免疫原具有挑战性。在这里,我们报告了一种稳定的悬浮适应中国仓鼠卵巢 (CHO) 细胞系的开发,该细胞系将糖基化限制在 Man5 和更早的中间体。该细胞系是使用成簇规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 基因编辑系统创建的,并且包含一种突变,该突变使编码甘露糖 (Alpha-1,3-)-糖蛋白 Beta-1,2-N-乙酰氨基葡萄糖基转移酶 (MGAT1) 的基因失活。在 MGAT1-CHO 细胞系中产生的单体 gp120 表现出与针对 V1/V2 结构域(例如 PG9)和 V3 茎(例如 PGT128 和 10-1074)的原型糖依赖性 bN-mAb 更好的结合,同时保留重要的糖非依赖性表位(例如 VRC01)的结构。MGAT1-CHO 细胞系在不损害倍增时间或在高细胞密度下生长能力的情况下将 N-连接糖基化途径限制在早期中间体的能力表明,它将成为 HIV-1 疫苗免疫原生物制药生产的有用底物。