National Research Council Canada, Ottawa, Ontario, Canada.
Universidad de Málaga, Departamento de Ingeniería de Comunicaciones, ETSI Telecomunicación, Málaga, Spain.
Nature. 2018 Aug;560(7720):565-572. doi: 10.1038/s41586-018-0421-7. Epub 2018 Aug 29.
In the late nineteenth century, Heinrich Hertz demonstrated that the electromagnetic properties of materials are intimately related to their structure at the subwavelength scale by using wire grids with centimetre spacing to manipulate metre-long radio waves. More recently, the availability of nanometre-scale fabrication techniques has inspired scientists to investigate subwavelength-structured metamaterials with engineered optical properties at much shorter wavelengths, in the infrared and visible regions of the spectrum. Here we review how optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices, and explore some of the challenges encountered in the transition from concept demonstration to viable technology.
19 世纪后期,海因里希·赫兹(Heinrich Hertz)通过使用厘米间距的金属丝网格来操控米长的无线电波,证明了材料的电磁特性与其亚波长尺度的结构密切相关。最近,纳米级制造技术的出现激发了科学家们去研究具有工程光学特性的亚波长结构超材料,这些超材料的波长在红外和可见光光谱的更短波段。本文综述了光学超材料如何有望提高下一代集成光子器件的性能,并探讨了从概念验证到可行技术的转变过程中所遇到的一些挑战。