Suppr超能文献

用于可扩展光子集成电路的各向异性超材料:关于用于高密度集成的亚波长光栅的综述

Anisotropic metamaterials for scalable photonic integrated circuits: a review on subwavelength gratings for high-density integration.

作者信息

Shin Yosep, Kim Kyungtae, Lee Jaewhan, Jahani Saman, Jacob Zubin, Kim Sangsik

机构信息

School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

Graduate School of Quantum Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

出版信息

Nanophotonics. 2025 Mar 31;14(9):1311-1331. doi: 10.1515/nanoph-2024-0627. eCollection 2025 Apr.

Abstract

Photonic integrated circuits (PICs) are transforming optical technology by miniaturizing complex photonic elements and systems onto single chips. However, scaling PICs to higher densities is constrained by optical crosstalk and device separation requirements, limiting both performance and size. Recent advancements in anisotropic metamaterials, particularly subwavelength gratings (SWGs), address these challenges by providing unprecedented control over evanescent fields and anisotropic perturbations in PICs. Here we review the role of anisotropic SWG metamaterials in enhancing integration density, detailing two foundational mechanisms - skin depth engineering and anisotropic perturbation - that mitigate crosstalk and enable advanced modal controls. We summarize their applications within four key functions: confinement manipulation, hetero-anisotropy and zero-birefringence, adiabatic mode conversion, and group velocity and dispersion control, showing how each benefits from distinct SWG properties. Finally, we discuss current limitations and future directions to expand the full potentials of anisotropic SWG metamaterials, toward highly dense and scalable PICs.

摘要

光子集成电路(PIC)正在通过将复杂的光子元件和系统小型化到单个芯片上来变革光学技术。然而,将PIC扩展到更高密度受到光学串扰和器件间距要求的限制,这限制了性能和尺寸。各向异性超材料,特别是亚波长光栅(SWG)的最新进展,通过对PIC中的倏逝场和各向异性微扰提供前所未有的控制来应对这些挑战。在这里,我们回顾各向异性SWG超材料在提高集成密度方面的作用,详细介绍两种基本机制——趋肤深度工程和各向异性微扰,它们可减轻串扰并实现先进的模态控制。我们总结了它们在四个关键功能中的应用:限制操纵、异质各向异性和零双折射、绝热模式转换以及群速度和色散控制,展示了每个功能如何受益于独特的SWG特性。最后,我们讨论当前的局限性和未来的方向,以扩展各向异性SWG超材料的全部潜力,朝着高密度和可扩展的PIC发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca34/12038609/68b666be60bc/j_nanoph-2024-0627_fig_001.jpg

相似文献

1
Anisotropic metamaterials for scalable photonic integrated circuits: a review on subwavelength gratings for high-density integration.
Nanophotonics. 2025 Mar 31;14(9):1311-1331. doi: 10.1515/nanoph-2024-0627. eCollection 2025 Apr.
2
Anisotropic leaky-like perturbation with subwavelength gratings enables zero crosstalk.
Light Sci Appl. 2023 Jun 2;12(1):135. doi: 10.1038/s41377-023-01184-5.
3
Zero-crosstalk silicon photonic refractive index sensor with subwavelength gratings.
Nano Converg. 2024 Sep 28;11(1):39. doi: 10.1186/s40580-024-00446-1.
4
Integrated polarization-free Bragg filters with subwavelength gratings for photonic sensing.
Opt Express. 2024 Jan 15;32(2):2147-2161. doi: 10.1364/OE.504043.
5
Subwavelength grating based mode (de)multiplexer for 3D photonic integrated circuits.
Appl Opt. 2021 Feb 10;60(5):1164-1170. doi: 10.1364/AO.416116.
6
Controlling leakage losses in subwavelength grating silicon metamaterial waveguides.
Opt Lett. 2016 Aug 1;41(15):3443-6. doi: 10.1364/OL.41.003443.
7
Subwavelength grating slot (SWGS) waveguide on silicon platform.
Opt Express. 2017 Jul 24;25(15):18250-18264. doi: 10.1364/OE.25.018250.
8
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography.
Nanomaterials (Basel). 2021 Nov 3;11(11):2949. doi: 10.3390/nano11112949.
9
Optical meta-waveguides for integrated photonics and beyond.
Light Sci Appl. 2021 Nov 22;10(1):235. doi: 10.1038/s41377-021-00655-x.
10
Broadband integrated polarization splitter and rotator using subwavelength grating claddings.
Opt Express. 2023 Jan 30;31(3):4140-4151. doi: 10.1364/OE.479195.

本文引用的文献

1
Zero-crosstalk silicon photonic refractive index sensor with subwavelength gratings.
Nano Converg. 2024 Sep 28;11(1):39. doi: 10.1186/s40580-024-00446-1.
2
Giant Optical Anisotropy in 2D Metal-Organic Chalcogenates.
ACS Nano. 2024 Sep 17;18(37):25489-25498. doi: 10.1021/acsnano.4c05043. Epub 2024 Aug 30.
4
Exploring van der Waals materials with high anisotropy: geometrical and optical approaches.
Light Sci Appl. 2024 Mar 8;13(1):68. doi: 10.1038/s41377-024-01407-3.
5
Compact mode converter on SOI based on a polygonal subwavelength grating structure.
Opt Lett. 2024 Feb 15;49(4):834-837. doi: 10.1364/OL.516127.
6
Roadmapping the next generation of silicon photonics.
Nat Commun. 2024 Jan 25;15(1):751. doi: 10.1038/s41467-024-44750-0.
8
Ultrabroadband and compact 2 × 2 3-dB coupler based on trapezoidal subwavelength gratings.
Opt Express. 2023 Jul 3;31(14):23542-23550. doi: 10.1364/OE.485816.
9
Anisotropic leaky-like perturbation with subwavelength gratings enables zero crosstalk.
Light Sci Appl. 2023 Jun 2;12(1):135. doi: 10.1038/s41377-023-01184-5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验