Suppr超能文献

男性耐力跑运动员下肢长骨应力性损伤的简化预测模型。

A Simplified Prediction Model for Lower Extremity Long Bone Stress Injuries in Male Endurance Running Athletes.

机构信息

Department of Sports Medicine, Kansas Athletics, Inc., Lawrence, Kansas.

Osness Human Performance Laboratories, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas; and.

出版信息

Clin J Sport Med. 2020 Sep;30(5):e124-e126. doi: 10.1097/JSM.0000000000000661.

Abstract

OBJECTIVE

Develop a prediction model for lower extremity long bone injuries (LBIs) in male endurance running athletes using dual-energy x-ray absorptiometry (DEXA).

DESIGN

Retrospective.

SETTING

Sports medicine department in a university athletic setting.

PARTICIPANTS

National Collegiate Athletic Association (NCAA) Division 1 white male endurance athletes (n = 27).

INDEPENDENT VARIABLES

Backward stepwise elimination was used to achieve a model that predicts LBI, by removing noncontributory variables (P > 0.10), using binary logistic regression. Independent prediction variables analyzed for model were as follows: (1) height (cm), body mass index (BMI) (kg/m), and total mass (kg); and (2) regional and total lean mass, fat mass, and bone density assessed using DEXA.

MAIN OUTCOME MEASURES

Dichotomous dependent variable was LBI.

RESULTS

Final constructed model predicted 96.3% of athletes with and without LBI. Prediction model were as follows: predict lower extremity long bone stress injury = 23.465 - 0.896 BMI + 1.043 (total upper-body mass) TUB - 34.536 leg bone mineral density (BMD). Predict lower extremity long bone stress injury is the LBI prediction, and TUB (kg) is total fat, muscle, and bone weight in trunk and arms.

CONCLUSIONS

These preliminary data suggest that Division 1 white male endurance running athletes are at risk of LBI with higher relative TUB and lower BMI in combination with a lower leg BMD.

摘要

目的

使用双能 X 射线吸收法(DEXA)为男性耐力跑步运动员建立下肢长骨损伤(LBIs)的预测模型。

设计

回顾性研究。

地点

大学运动环境中的运动医学科。

参与者

美国全国大学体育协会(NCAA)一级白种男性耐力运动员(n = 27)。

自变量

采用向后逐步消除法,通过二元逻辑回归去除无贡献变量(P > 0.10),以达到预测 LBI 的模型。分析用于模型的独立预测变量如下:(1)身高(cm)、体重指数(BMI)(kg/m)和总质量(kg);(2)DEXA 评估的区域和总瘦体重、脂肪量和骨密度。

主要观察指标

二项因变量为 LBI。

结果

最终构建的模型预测有和无 LBI 的运动员的比例分别为 96.3%和 96.3%。预测模型如下:预测下肢长骨应力损伤=23.465-0.896 BMI+1.043(全身总质量)TUB-34.536 下肢骨骨密度(BMD)。预测下肢长骨应力损伤是 LBI 的预测值,TUB(kg)是躯干和手臂中脂肪、肌肉和骨骼的总重量。

结论

这些初步数据表明,一级白种男性耐力跑步运动员下肢长骨损伤的风险与较高的相对 TUB 和较低的 BMI 结合较低的下肢 BMD 有关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验