Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston.
Am J Clin Pathol. 2018 Oct 24;150(6):555-566. doi: 10.1093/ajcp/aqy085.
An unfortunate reality of laboratory medicine is that blood specimens collected from one patient occasionally get mislabeled with identifiers from a different patient, resulting in so-called "wrong blood in tube" (WBIT) errors and potential patient harm. Here, we sought to develop a machine learning-based, multianalyte delta check algorithm to detect WBIT errors and mitigate patient harm.
We simulated WBIT errors within sets of routine inpatient chemistry test results to develop, train, and evaluate five machine learning-based WBIT detection algorithms.
The best-performing WBIT detection algorithm we developed was based on a support vector machine and incorporated changes in test results between consecutive collections across 11 analytes. This algorithm achieved an area under the curve of 0.97 and considerably outperformed traditional single-analyte delta checks.
Machine learning-based multianalyte delta checks may offer a practical strategy to identify WBIT errors prior to test reporting and improve patient safety.
实验室医学中存在一个不幸的现实,即从一位患者采集的血液标本偶尔会与另一位患者的标识符混淆,导致所谓的“试管内错误血液”(Wrong Blood in Tube,WBIT)错误,并可能对患者造成伤害。在这里,我们试图开发一种基于机器学习的多分析物差值检查算法,以检测 WBIT 错误并减轻患者伤害。
我们在一系列常规住院化学测试结果中模拟了 WBIT 错误,以开发、训练和评估五种基于机器学习的 WBIT 检测算法。
我们开发的性能最佳的 WBIT 检测算法基于支持向量机,并整合了连续采集的 11 项分析物之间测试结果的变化。该算法的曲线下面积为 0.97,明显优于传统的单分析物差值检查。
基于机器学习的多分析物差值检查可能是一种在报告测试之前识别 WBIT 错误并提高患者安全性的实用策略。