Immunology Program, Sloan Kettering Institute, New York, NY, USA; Clinical & Translational Science Center, Weill Cornell Medicine, New York, NY, USA.
Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
Mol Cell. 2018 Oct 4;72(1):152-161.e7. doi: 10.1016/j.molcel.2018.07.037. Epub 2018 Aug 30.
Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.
结核分枝杆菌的感染仍然导致大量的人类死亡,部分原因是出现了抗微生物药物耐药性。结核分枝杆菌的抗微生物药物耐药性仅仅是由于改变药物激活剂或靶标的染色体突变所致,然而,控制分枝杆菌 DNA 损伤反应 (DDR) 的机制仍未完全确定。在这里,我们确定 RecA 丝氨酸 207 是一个多功能信号枢纽,可控制分枝杆菌的 DDR。DNA 损伤后 RecA S207 发生磷酸化,通过选择性抑制 RecA 的 LexA 共蛋白酶功能而不影响其 ATP 酶或链交换功能,从而抑制抗生素耐药性的出现。此外,RecA 在分枝杆菌 DDR 期间与细胞质膜结合,其中心磷脂可以特异性抑制未修饰的 RecA 的 LexA 共蛋白酶功能,但不能抑制 S207 磷酸化的 RecA。这些发现表明,RecA S207 通过磷酸化和心磷脂介导的 RecA 共蛋白酶功能抑制来控制分枝杆菌中的突变和抗生素耐药性。