Suppr超能文献

老年人皮肤撕裂风险预测模型:一项前瞻性队列研究。

A risk model for the prediction of skin tears in aged care residents: A prospective cohort study.

机构信息

School of Nursing, Midwifery and Paramedicine, Curtin University, Perth, Western Australia, Australia.

Silver Chain Group, Perth, Western Australia, Australia.

出版信息

Int Wound J. 2019 Feb;16(1):52-63. doi: 10.1111/iwj.12985. Epub 2018 Sep 2.

Abstract

The objective of this study was to construct a predictive model to identify aged care residents at risk of future skin tears. Extensive data about individual characteristics, skin characteristics, and skin properties were gathered from 173 participants at baseline and at 6 months. A predictive model, developed using multivariable logistic regression, identified five variables that significantly predicted the risk of skin tear at 6 months. These included: a history of skin tears in the previous 12 months (OR 3.82 [1.64-8.90], P = 0.002), purpura ≤20 mm in size (OR 3.64 [1.42-9.35], P = 0.007), a history of falls in the previous 3 months (OR 3.37 [1.54-7.41], P = 0.002), clinical manifestations of elastosis (OR 3.19 [1.38-7.38], P = 0.007), and male gender (OR 3.08 [1.22-7.77], P = 0.017). The predictive model yielded an area under the receiver operating characteristic curve of 0.854 with an 81.7% sensitivity and an 81.4% specificity. This predictive model could inform a simple but promising bedside tool for identifying older individuals at risk of skin tears.

摘要

本研究旨在构建一个预测模型,以识别有未来皮肤撕裂风险的老年护理居民。在基线和 6 个月时,从 173 名参与者那里收集了大量关于个体特征、皮肤特征和皮肤特性的详细数据。使用多变量逻辑回归开发的预测模型确定了五个变量,这些变量显著预测了 6 个月时皮肤撕裂的风险。这些变量包括:过去 12 个月内有皮肤撕裂史(OR 3.82 [1.64-8.90],P = 0.002)、大小≤20 毫米的瘀斑(OR 3.64 [1.42-9.35],P = 0.007)、过去 3 个月内有跌倒史(OR 3.37 [1.54-7.41],P = 0.002)、弹性组织临床表现(OR 3.19 [1.38-7.38],P = 0.007)和男性(OR 3.08 [1.22-7.77],P = 0.017)。预测模型的受试者工作特征曲线下面积为 0.854,灵敏度为 81.7%,特异性为 81.4%。该预测模型可以为识别有皮肤撕裂风险的老年人提供一种简单但有前途的床边工具。

相似文献

4
Models for predicting skin tears: A comparison.预测皮肤撕裂的模型:比较。
Int Wound J. 2020 Jun;17(3):823-830. doi: 10.1111/iwj.13340. Epub 2020 Mar 15.
6
The development and testing of a skin tear risk assessment tool.皮肤撕裂风险评估工具的开发与测试。
Int Wound J. 2017 Feb;14(1):97-103. doi: 10.1111/iwj.12561. Epub 2015 Dec 22.

引用本文的文献

5
Sampling the skin surface chemistry for diagnosis and prognosis.采样皮肤表面化学物质用于诊断和预后。
Wound Repair Regen. 2022 Jul;30(4):509-525. doi: 10.1111/wrr.13030. Epub 2022 Jun 17.
6
Models for predicting skin tears: A comparison.预测皮肤撕裂的模型:比较。
Int Wound J. 2020 Jun;17(3):823-830. doi: 10.1111/iwj.13340. Epub 2020 Mar 15.

本文引用的文献

5
The development and testing of a skin tear risk assessment tool.皮肤撕裂风险评估工具的开发与测试。
Int Wound J. 2017 Feb;14(1):97-103. doi: 10.1111/iwj.12561. Epub 2015 Dec 22.
10
Natural and sun-induced aging of human skin.人类皮肤的自然老化和光老化。
Cold Spring Harb Perspect Med. 2015 Jan 5;5(1):a015370. doi: 10.1101/cshperspect.a015370.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验