Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH.
Department of Neuroscience, Ohio State University, Columbus, OH.
J Biol Rhythms. 2018 Oct;33(5):497-514. doi: 10.1177/0748730418791713. Epub 2018 Sep 3.
Within the suprachiasmatic nucleus (SCN)-the locus of the master circadian clock- transcriptional regulation via the CREB/CRE pathway is implicated in the functioning of the molecular clock timing process, and is a key conduit through which photic input entrains the oscillator. One event driving CRE-mediated transcription is the phosphorylation of CREB at serine 133 (Ser). Indeed, numerous reporter gene assays have shown that an alanine point mutation in Ser reduces CREB-mediated transcription. Here, we sought to examine the contribution of Ser phosphorylation to the functional role of CREB in SCN clock physiology in vivo. To this end, we used a CREB knock-in mouse strain, in which Ser was mutated to alanine (S/A CREB). Under a standard 12 h light-dark cycle, S/A CREB mice exhibited a marked alteration in clock-regulated wheel running activity. Relative to WT mice, S/A CREB mice had highly fragmented bouts of locomotor activity during the night phase, elevated daytime activity, and a delayed phase angle of entrainment. Further, under free-running conditions, S/A CREB mice had a significantly longer tau than WT mice and reduced activity amplitude. In S/A CREB mice, light-evoked clock entrainment, using both Aschoff type 1 and 6 h "jet lag" paradigms, was markedly reduced relative to WT mice. S/A CREB mice exhibited attenuated transcriptional drive, as assessed by examining both clock-gated and light-evoked gene expression. Finally, SCN slice culture imaging detected a marked disruption in cellular clock phase synchrony following a phase-resetting stimulus in S/A CREB mice. Together, these data indicate that signaling through CREB phosphorylation at Ser is critical for the functional fidelity of both SCN timing and entrainment.
在视交叉上核(SCN)——主生物钟的所在地——通过 CREB/CRE 途径的转录调控被认为与分子钟计时过程的功能有关,是光输入使振荡器同步的关键途径。驱动 CRE 介导的转录的一个事件是 CREB 丝氨酸 133 位(Ser)的磷酸化。事实上,许多报告基因检测表明,Ser 处的丙氨酸点突变会降低 CREB 介导的转录。在这里,我们试图研究 Ser 磷酸化对 CREB 在 SCN 时钟生理学中的功能作用的贡献。为此,我们使用了一种 CREB 敲入小鼠品系,其中 Ser 突变为丙氨酸(S/A CREB)。在标准的 12 小时明暗循环下,S/A CREB 小鼠的时钟调节轮跑活动发生明显改变。与 WT 小鼠相比,S/A CREB 小鼠在夜间阶段的运动活动呈现高度碎片化,白天活动增加,同步相位角延迟。此外,在自由运行条件下,S/A CREB 小鼠的 tau 明显长于 WT 小鼠,且活动幅度降低。在 S/A CREB 小鼠中,用光诱发的时钟同步,包括 Aschoff 1 型和 6 小时“时差”范式,相对于 WT 小鼠明显减少。S/A CREB 小鼠的转录驱动力减弱,通过检查时钟门控和光诱发基因表达来评估。最后,SCN 切片培养成像检测到 S/A CREB 小鼠中细胞时钟相位同步明显中断。综上所述,这些数据表明,Ser 处 CREB 磷酸化信号对于 SCN 计时和同步的功能保真度至关重要。