California Institute of Techology, Division of Chemistry and Chemical Engineering, Pasadena, CA, USA.
Lab Chip. 2018 Oct 23;18(21):3251-3262. doi: 10.1039/c8lc00639c.
Biological function arises from the interplay of proteins, transcripts, and metabolites. An ongoing revolution in miniaturization technologies has created tools to analyze any one of these species in single cells, thus resolving the heterogeneity of tissues previously invisible to bulk measurements. An emerging frontier is single cell multi-omics, which is the measurement of multiple classes of analytes from single cells. Here, we combine bead-based transcriptomics with microchip-based proteomics to measure intracellular proteins and transcripts from single cells and defined small numbers of cells. The transcripts and proteins are independently measured by sequencing and fluorescent immunoassays respectively, to preserve their optimal measurement modes, and linked by encoding the physical address locations of the cells into digital sequencing space using spatially patterned DNA barcodes. We resolve cell-type-specific protein and transcript signatures and present a path forward to scaling the platform to high-throughput.
生物功能源于蛋白质、转录物和代谢物的相互作用。微型化技术的不断发展,创造了分析单细胞中任何一种物质的工具,从而解决了以前在批量测量中无法看到的组织异质性问题。单细胞多组学是一个新兴的前沿领域,它可以对单细胞中的多种分析物进行测量。在这里,我们结合基于珠粒的转录组学和基于微芯片的蛋白质组学,从单细胞和少量细胞中测量细胞内的蛋白质和转录物。通过分别进行测序和荧光免疫分析来独立测量转录物和蛋白质,以保留它们的最佳测量模式,并通过使用空间图案化的 DNA 条形码将细胞的物理地址位置编码到数字测序空间中,将它们联系起来。我们解析了细胞类型特异性的蛋白质和转录本特征,并提出了将该平台扩展到高通量的途径。