Suppr超能文献

石墨烯氧化物与石墨炔氧化物在物理化学、生物学和细胞毒性方面的比较。

Comparisons between Graphene Oxide and Graphdiyne Oxide in Physicochemistry Biology and Cytotoxicity.

机构信息

Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China.

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.

出版信息

ACS Appl Mater Interfaces. 2018 Oct 3;10(39):32946-32954. doi: 10.1021/acsami.8b06804. Epub 2018 Sep 21.

Abstract

Graphdiyne (GDY) and graphene are regarded as two promising two-dimensional carbon-based materials, which have unique planar structure and novel electronic properties. Differences between the two carbon allotropes in their physicochemistry biology and cytotoxicity have never been explored. Here, we chemically functionalized the surface of the two carbon allotropes using similar oxidation processes and compared their physicochemistry, biology, and mutagenesis. Graphene oxide (GO) and GDY oxide (GDYO) showed similarities in their size, morphology, and physical spectral characteristics, excepting the differences in sp- and sp-hybridizations and Fourier transform infrared spectroscopy. GDYO was well soluble in various media. In contrast, GO was only soluble in HO, but kinetically aggregated in 0.9% NaCl, phosphate buffered saline, and cell media within 24 h incubation when its concentrations increased. GO nanoparticles adhered and aggregated to the surface of a human hepatocyte membrane, resulting in cell membrane ruffle, methuosis, and apoptosis. Adhesion of GO to cells caused cell stress and induced reactive oxygen species. In contrast, GDYO did not adhere to the cell membrane to produce the related consequences. Both GDYO and GO showed in vivo mutagenesis potential but no erythrocyte-killing effect, and both were antioxidant and bioequivalent at binding to single-stranded DNA and doxorubicin, thus causing fluorescence quenching. The present study significantly enriches our existing knowledge of GO/alkene and GDYO/alkyne chemistry.

摘要

石墨炔(GDY)和石墨烯被认为是两种有前途的二维碳基材料,它们具有独特的平面结构和新颖的电子特性。这两种碳同素异形体在理化学生物学和细胞毒性方面的差异从未被探索过。在这里,我们使用类似的氧化过程对两种碳同素异形体的表面进行化学功能化,并比较了它们的理化、生物学和致突变性。氧化石墨烯(GO)和 GDY 氧化物(GDYO)在尺寸、形态和物理光谱特征上具有相似性,除了 sp 和 sp 杂化以及傅立叶变换红外光谱的差异外。GDYO 在各种介质中都有很好的溶解性。相比之下,GO 只在 H2O 中溶解,但在 0.9%NaCl、磷酸盐缓冲液和细胞培养基中动力学聚集,在 24 h 孵育时浓度增加。GO 纳米颗粒黏附并聚集在人肝细胞膜表面,导致细胞膜皱缩、巨自噬和细胞凋亡。GO 对细胞的黏附导致细胞应激并诱导活性氧。相比之下,GDYO 不会黏附在细胞膜上产生相关后果。GDYO 和 GO 均表现出体内致突变潜力,但无红细胞杀伤作用,且与单链 DNA 和阿霉素结合时均具有抗氧化和生物等效性,从而导致荧光猝灭。本研究显著丰富了我们对 GO/烯烃和 GDYO/炔烃化学的现有认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验