文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma.

作者信息

Yuan Yu-Guo, Wang Yan-Hong, Xing Hui-Hui, Gurunathan Sangiliyandi

机构信息

Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.

Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea.

出版信息

Int J Nanomedicine. 2017 Aug 16;12:5819-5839. doi: 10.2147/IJN.S140605. eCollection 2017.


DOI:10.2147/IJN.S140605
PMID:28860751
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5566358/
Abstract

BACKGROUND: Graphene and graphene-related materials have gained substantial interest from both academia and industry for the development of unique nanomaterials for biomedical applications. Graphene oxide (GO) and silver nanoparticles (AgNPs) are a valuable platform for the development of nanocomposites, permitting the combination of nanomaterials with different physical and chemical properties to generate novel materials with improved and effective functionalities in a single platform. Therefore, this study was conducted to synthesize a graphene oxide-silver nanoparticle (GO-AgNPs) nanocomposite using the biomolecule quercetin and evaluate the potential cytotoxicity and mechanism of GO-AgNPs in human neuroblastoma cancer cells (SH-SY5Y). METHODS: The synthesized GO-AgNPs were characterized using various analytical techniques. The potential toxicities of GO-AgNPs were evaluated using a series of biochemical and cellular assays. The expression of apoptotic and anti-apoptotic genes was measured by quantitative real-time reverse transcription polymerase chain reaction. Further, apoptosis was confirmed by caspase-9/3 activity and a terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and GO-AgNPs-induced autophagy was also confirmed by transmission electron microscopy. RESULTS: The prepared GO-AgNPs exhibited significantly higher cytotoxicity toward SH-SY5Y cells than GO. GO-AgNPs induced significant cytotoxicity in SH-SY5Y cells by the loss of cell viability, inhibition of cell proliferation, increased leakage of lactate dehydrogenase, decreased level of mitochondrial membrane potential, reduced numbers of mitochondria, enhanced level of reactive oxygen species generation, increased expression of pro-apoptotic genes, and decreased expression of anti-apoptotic genes. GO-AgNPs induced caspase-9/3-dependent apoptosis via DNA fragmentation. Finally, GO-AgNPs induced accumulation of autophagosomes and autophagic vacuoles. CONCLUSION: In this study, we developed an environmentally friendly, facile, dependable, and simple method for the synthesis of GO-AgNPs nanocomposites using quercetin. The synthesized GO-AgNPs exhibited enhanced cytotoxicity compared with that of GO at very low concentrations. This study not only elucidates the potential cytotoxicity against neuroblastoma cancer cells, but also reveals the molecular mechanism of toxicity.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/93ed718e4fa7/ijn-12-5819Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/e8f2f8840751/ijn-12-5819Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/efcbb7a0337a/ijn-12-5819Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/d9298e15efe6/ijn-12-5819Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/39beefca6b1e/ijn-12-5819Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/abd05e3f51cf/ijn-12-5819Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/e24b80603ef2/ijn-12-5819Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/a309fba3a165/ijn-12-5819Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/77c57f865683/ijn-12-5819Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/d2fbcd2a675c/ijn-12-5819Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/93ed718e4fa7/ijn-12-5819Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/e8f2f8840751/ijn-12-5819Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/efcbb7a0337a/ijn-12-5819Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/d9298e15efe6/ijn-12-5819Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/39beefca6b1e/ijn-12-5819Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/abd05e3f51cf/ijn-12-5819Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/e24b80603ef2/ijn-12-5819Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/a309fba3a165/ijn-12-5819Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/77c57f865683/ijn-12-5819Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/d2fbcd2a675c/ijn-12-5819Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae3/5566358/93ed718e4fa7/ijn-12-5819Fig10.jpg

相似文献

[1]
Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma.

Int J Nanomedicine. 2017-8-16

[2]
Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells.

Int J Nanomedicine. 2017-9-5

[3]
Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

Int J Nanomedicine. 2015-10-5

[4]
Graphene Oxide-Silver Nanoparticles Nanocomposite Stimulates Differentiation in Human Neuroblastoma Cancer Cells (SH-SY5Y).

Int J Mol Sci. 2017-11-28

[5]
Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy.

Int J Nanomedicine. 2017-10-12

[6]
Tobramycin mediated silver nanospheres/graphene oxide composite for synergistic therapy of bacterial infection.

J Photochem Photobiol B. 2018-5-7

[7]
Preparation, characterization and anti-cancer activity of graphene oxide-‑silver nanocomposite.

J Photochem Photobiol B. 2020-9

[8]
Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.

Int J Mol Sci. 2016-11-29

[9]
Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells.

Int J Nanomedicine. 2013-11-15

[10]
Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3).

Int J Nanomedicine. 2017-10-13

引用本文的文献

[1]
Composites of Reduced Graphene Oxide Based on Silver Nanoparticles and Their Effect on Breast Cancer Stem Cells.

Bioengineering (Basel). 2025-5-11

[2]
Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment.

ACS Omega. 2024-6-12

[3]
Multiple RNA Profiling Reveal Epigenetic Toxicity Effects of Oxidative Stress by Graphene Oxide Silver Nanoparticles in-vitro.

Int J Nanomedicine. 2023

[4]
Identification of circular RNAs expression pattern in caprine fetal fibroblast cells exposed to a chronic non-cytotoxic dose of graphene oxide-silver nanoparticle nanocomposites.

Front Bioeng Biotechnol. 2023-3-16

[5]
Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis.

Front Pharmacol. 2022-10-18

[6]
Novel Graphene Oxide/Quercetin and Graphene Oxide/Juglone Nanostructured Platforms as Effective Drug Delivery Systems with Biomedical Applications.

Nanomaterials (Basel). 2022-6-6

[7]
Retracted Article: Organometallic Ag nanostructures prepared using extract are highly effective against multidrug-resistant bacteria.

RSC Adv. 2018-8-29

[8]
Modulation of Cancer Cell Autophagic Responses by Graphene-Based Nanomaterials: Molecular Mechanisms and Therapeutic Implications.

Cancers (Basel). 2021-8-18

[9]
Anti-proliferative and apoptotic effects of green synthesized silver nanoparticles using on human glioblastoma cells.

3 Biotech. 2021-8

[10]
Graphene Oxide-Silver Nanoparticle Nanocomposites Induce Oxidative Stress and Aberrant Methylation in Caprine Fetal Fibroblast Cells.

Cells. 2021-3-19

本文引用的文献

[1]
Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.

Int J Mol Sci. 2016-11-29

[2]
Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches.

Int J Mol Sci. 2016-9-13

[3]
Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy.

Int J Nanomedicine. 2016-8-2

[4]
Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials.

Int J Nanomedicine. 2016-5-5

[5]
A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.

Molecules. 2016-3-18

[6]
Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages.

J Nanobiotechnology. 2016-2-24

[7]
Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells.

Sci Rep. 2016-2-12

[8]
Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

Int J Nanomedicine. 2015-10-5

[9]
Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse.

Nanotoxicology. 2016

[10]
The Unreliability of MTT Assay in the Cytotoxic Test of Primary Cultured Glioblastoma Cells.

Exp Neurobiol. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索