UNATI, CEA DRF/Institut Joliot, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Bât 145, point courrier 156, 91191, Gif-Sur-Yvette, France.
CATI Multicenter Neuroimaging Platform, cati-neuroimaging.com France, Paris, France.
Brain Struct Funct. 2018 Dec;223(9):4153-4168. doi: 10.1007/s00429-018-1735-9. Epub 2018 Sep 5.
Robust spatial alignment of post mortem data and in vivo MRI acquisitions from different ages, especially from the early developmental stages, into standard spaces is still a bottleneck hampering easy comparison with the mainstream neuroimaging results. In this paper, we test a landmark-based spatial normalization strategy as a framework for the seamless integration of any macroscopic dataset in the context of the Human Brain Project (HBP). This strategy stems from an approach called DISCO embedding sulcal constraints in a registration framework used to initialize DARTEL, the widely used spatial normalization approach proposed in the SPM software. We show that this strategy is efficient with a heterogeneous dataset including challenging data as preterm newborns, infants, post mortem histological data and a synthetic atlas computed from averaging the ICBM database, as well as more commonly studied data acquired in vivo in adults. We then describe some perspectives for a research program aiming at improving folding pattern matching for atlas inference in the context of the future HBP's portal.
将来自不同年龄段的死后数据和体内 MRI 采集,尤其是来自早期发育阶段的死后数据和体内 MRI 采集,与标准空间进行稳健的空间配准仍然是一个瓶颈,阻碍了与主流神经影像学结果的轻松比较。在本文中,我们测试了一种基于地标(landmark)的空间归一化策略,作为在人类脑计划(HBP)背景下无缝集成任何宏观数据集的框架。该策略源于一种称为 DISCO 的方法,它将脑沟约束嵌入到用于初始化 DARTEL 的注册框架中,DARTEL 是 SPM 软件中广泛使用的空间归一化方法。我们展示了该策略对于包括早产儿、婴儿、死后组织学数据和从 ICBM 数据库平均计算得出的合成图谱等具有挑战性的数据以及在成人中更常见的体内采集数据的异构数据集是有效的。然后,我们描述了一个研究计划的一些观点,该计划旨在改善未来 HBP 门户中图谱推断的折叠模式匹配。