Steger Céline, Moatti Charles, Payette Kelly, De Silvestro Alexandra, Nguyen Thi Dao, Coraj Seline, Yakoub Ninib, Natalucci Giancarlo, Kottke Raimund, Tuura Ruth, Knirsch Walter, Jakab Andras
Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland.
Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
Front Neurosci. 2023 Dec 6;17:1252850. doi: 10.3389/fnins.2023.1252850. eCollection 2023.
Despite established knowledge on the morphological and functional asymmetries in the human brain, the understanding of how brain asymmetry patterns change during late fetal to neonatal life remains incomplete. The goal of this study was to characterize the dynamic patterns of inter-hemispheric brain asymmetry over this critically important developmental stage using longitudinally acquired MRI scans.
Super-resolution reconstructed T2-weighted MRI of 20 neurotypically developing participants were used, and for each participant fetal and neonatal MRI was acquired. To quantify brain morphological changes, deformation-based morphometry (DBM) on the longitudinal MRI scans was utilized. Two registration frameworks were evaluated and used in our study: (A) fetal to neonatal image registration and (B) registration through a mid-time template. Developmental changes of cerebral asymmetry were characterized as (A) the inter-hemispheric differences of the Jacobian determinant (JD) of fetal to neonatal morphometry change and the (B) time-dependent change of the JD capturing left-right differences at fetal or neonatal time points. Left-right and fetal-neonatal differences were statistically tested using multivariate linear models, corrected for participants' age and sex and using threshold-free cluster enhancement.
Fetal to neonatal morphometry changes demonstrated asymmetry in the temporal pole, and left-right asymmetry differences between fetal and neonatal timepoints revealed temporal changes in the temporal pole, likely to go from right dominant in fetal to a bilateral morphology in neonatal timepoint. Furthermore, the analysis revealed right-dominant subcortical gray matter in neonates and three clusters of increased JD values in the left hemisphere from fetal to neonatal timepoints.
While these findings provide evidence that morphological asymmetry gradually emerges during development, discrepancies between registration frameworks require careful considerations when using DBM for longitudinal data of early brain development.
尽管人们对人类大脑的形态和功能不对称已有既定认识,但对于大脑不对称模式在胎儿晚期至新生儿期如何变化的理解仍不完整。本研究的目的是利用纵向获取的磁共振成像(MRI)扫描,描绘在这一至关重要的发育阶段半球间大脑不对称的动态模式。
使用了20名神经发育正常参与者的超分辨率重建T2加权MRI,并为每位参与者获取了胎儿期和新生儿期的MRI。为了量化大脑形态变化,对纵向MRI扫描采用了基于变形的形态测量法(DBM)。在我们的研究中评估并使用了两种配准框架:(A)胎儿期至新生儿期图像配准,以及(B)通过中间时间模板进行配准。大脑不对称的发育变化被表征为:(A)胎儿期至新生儿期形态测量变化的雅可比行列式(JD)的半球间差异,以及(B)在胎儿期或新生儿期时间点捕获左右差异的JD的时间依赖性变化。使用多元线性模型对左右差异和胎儿 - 新生儿差异进行统计学检验,对参与者的年龄和性别进行校正,并使用无阈值聚类增强法。
胎儿期至新生儿期的形态测量变化显示颞极存在不对称,胎儿期和新生儿期时间点之间的左右不对称差异揭示了颞极的时间变化,可能从胎儿期的右侧优势变为新生儿期的双侧形态。此外,分析显示新生儿的皮质下灰质以右侧为主,并且从胎儿期到新生儿期时间点,左半球有三个JD值增加的聚类。
虽然这些发现提供了证据表明形态不对称在发育过程中逐渐出现,但在将DBM用于早期大脑发育的纵向数据时,配准框架之间的差异需要仔细考虑。