Suppr超能文献

手性分子在 DNA 组装等离子体热点中的圆二色性。

Circular Dichroism of Chiral Molecules in DNA-Assembled Plasmonic Hotspots.

机构信息

Fakultät für Physik and Center for Nanoscience , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 Munich , Germany.

Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States.

出版信息

ACS Nano. 2018 Sep 25;12(9):9110-9115. doi: 10.1021/acsnano.8b03146. Epub 2018 Sep 12.

Abstract

The chiral state of a molecule plays a crucial role in molecular recognition and biochemical reactions. Because of this and owing to the fact that most modern drugs are chiral, the sensitive and reliable detection of the chirality of molecules is of great interest to drug development. The majority of naturally occurring biomolecules exhibit circular dichroism (CD) in the UV range. Theoretical studies and several experiments have demonstrated that this UV-CD can be transferred into the plasmonic frequency domain when metal surfaces and chiral biomolecules are in close proximity. Here, we demonstrate that the CD transfer effect can be drastically enhanced by placing chiral molecules, here double-stranded DNA, inside a plasmonic hotspot. By using different particle types (gold, silver, spheres, and rods) and by exploiting the versatility of DNA origami, we were able to systematically study the impact of varying particle distances on the CD transfer efficiency and to demonstrate CD transfer over the whole optical spectrum down to the near-infrared. For this purpose, nanorods were also placed upright on DNA origami sheets, forming strong optical antennas. Theoretical models, demonstrating the intricate relationships between molecular chirality and achiral electric fields, support our experimental findings. From both experimental measurements and theoretical considerations, we conclude that the transferred CD is most intensive for systems with strong plasmonic hotspots, as we find them in relatively small gaps (5-12 nm) between spherical nanoparticles and preferably between the tips of nanorods.

摘要

分子的手性状态在分子识别和生化反应中起着至关重要的作用。由于这个原因,并且由于大多数现代药物都是手性的,因此对药物开发来说,灵敏可靠地检测分子的手性具有重要意义。大多数天然存在的生物分子在紫外范围内表现出圆二色性(CD)。理论研究和多项实验表明,当金属表面和手性生物分子非常接近时,这种紫外-CD 可以转移到等离子体频率域。在这里,我们证明通过将手性分子(双链 DNA)置于等离子体热点内,可以大大增强 CD 转移效应。通过使用不同类型的颗粒(金、银、球体和棒体)并利用 DNA 折纸术的多功能性,我们能够系统地研究不同颗粒距离对 CD 转移效率的影响,并证明在整个光学光谱范围内(直至近红外)都能进行 CD 转移。为此,还将纳米棒垂直放置在 DNA 折纸片上,形成强光学天线。理论模型,演示了分子手性与非手性电场之间的复杂关系,支持我们的实验发现。从实验测量和理论考虑两方面,我们得出结论,对于具有强等离子体热点的系统,转移的 CD 最为强烈,正如我们在球形纳米颗粒之间(5-12nm)的相对较小间隙中,或者优选在纳米棒的尖端之间找到的情况一样。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验