Kubo Shosei, Kaji Hironori
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
Sci Rep. 2018 Sep 7;8(1):13462. doi: 10.1038/s41598-018-31722-w.
In amorphous organic semiconducting systems, hole and electron transfer has been considered to occur based on the overlap of highest occupied molecular orbitals (HOMOs) and that of lowest unoccupied molecular orbitals (LUMOs) between two adjacent molecules, respectively. Other molecular orbitals (MOs), HOMO-1, HOMO-2, … and LUMO+1, LUMO+2, …, have been neglected in charge transport calculations. However, these MOs could potentially contribute to charge transport. In this study, our multiscale simulations show that carriers are effectively transported not only via HOMOs or LUMOs but also via other MOs when the MOs are close in energy. Because these multiple MOs are active in charge transports, here we call them multiple frontier orbitals. Molecules with multiple frontier orbitals are found to possess high carrier mobility. The findings in this study provide guidelines to aid design of materials with excellent charge transport properties.
在非晶态有机半导体系统中,空穴和电子转移被认为分别是基于两个相邻分子之间最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的重叠而发生的。在电荷传输计算中,其他分子轨道(MO),如HOMO-1、HOMO-2等以及LUMO+1、LUMO+2等都被忽略了。然而,这些分子轨道可能对电荷传输有潜在贡献。在本研究中,我们的多尺度模拟表明,当这些分子轨道能量相近时,载流子不仅可以通过HOMO或LUMO有效地传输,还可以通过其他分子轨道传输。由于这些多个分子轨道在电荷传输中起作用,我们在此将它们称为多个前沿轨道。发现具有多个前沿轨道的分子具有较高的载流子迁移率。本研究中的发现为设计具有优异电荷传输性能的材料提供了指导。