Suppr超能文献

神经调节以帕金森病步态病理性β爆发而非生理β爆发为目标。

Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson's disease.

机构信息

Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.

Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford University, Department of Neurosurgery, 300 Pasteur Drive, Stanford, CA 94305, USA.

出版信息

Neurobiol Dis. 2018 Dec;120:107-117. doi: 10.1016/j.nbd.2018.09.004. Epub 2018 Sep 6.

Abstract

Freezing of gait (FOG) is a devastating axial motor symptom in Parkinson's disease (PD) leading to falls, institutionalization, and even death. The response of FOG to dopaminergic medication and deep brain stimulation (DBS) is complex, variable, and yet to be optimized. Fundamental gaps in the knowledge of the underlying neurobiomechanical mechanisms of FOG render this symptom one of the unsolved challenges in the treatment of PD. Subcortical neural mechanisms of gait impairment and FOG in PD are largely unknown due to the challenge of accessing deep brain circuitry and measuring neural signals in real time in freely-moving subjects. Additionally, there is a lack of gait tasks that reliably elicit FOG. Since FOG is episodic, we hypothesized that dynamic features of subthalamic (STN) beta oscillations, or beta bursts, may contribute to the Freezer phenotype in PD during gait tasks that elicit FOG. We also investigated whether STN DBS at 60 Hz or 140 Hz affected beta burst dynamics and gait impairment differently in Freezers and Non-Freezers. Synchronized STN local field potentials, from an implanted, sensing neurostimulator (Activa® PC + S, Medtronic, Inc.), and gait kinematics were recorded in 12 PD subjects, off-medication during forward walking and stepping-in-place tasks under the following randomly presented conditions: NO, 60 Hz, and 140 Hz DBS. Prolonged movement band beta burst durations differentiated Freezers from Non-Freezers, were a pathological neural feature of FOG and were shortened during DBS which improved gait. Normal gait parameters, accompanied by shorter bursts in Non-Freezers, were unchanged during DBS. The difference between the mean burst duration between hemispheres (STNs) of all individuals strongly correlated with the difference in stride time between their legs but there was no correlation between mean burst duration of each STN and stride time of the contralateral leg, suggesting an interaction between hemispheres influences gait. These results suggest that prolonged STN beta burst durations measured during gait is an important biomarker for FOG and that STN DBS modulated long not short burst durations, thereby acting to restore physiological sensorimotor information processing, while improving gait.

摘要

冻结步态(FOG)是帕金森病(PD)的一种严重的轴向运动症状,可导致跌倒、住院甚至死亡。FOG 对多巴胺能药物和深部脑刺激(DBS)的反应是复杂的、多变的,尚未得到优化。对 FOG 潜在神经生物力学机制的认识存在根本差距,使得这一症状成为 PD 治疗中的未解决挑战之一。由于难以进入深部脑回路并在自由运动的受试者中实时测量神经信号,因此 PD 步态障碍和 FOG 的皮质下神经机制在很大程度上尚不清楚。此外,缺乏可靠地引发 FOG 的步态任务。由于 FOG 是间歇性的,我们假设在引发 FOG 的步态任务中,丘脑底核(STN)β 振荡或β爆发的动态特征可能与 PD 中的冻结表型有关。我们还研究了 STN 以 60Hz 或 140Hz 刺激是否会以不同的方式影响冻结者和非冻结者的β爆发动力学和步态障碍。在 12 名 PD 受试者中,在停药期间,使用植入式、感应神经刺激器(Activa® PC+S,美敦力公司)同步记录 STN 局部场电位和步态运动学,在以下随机呈现的条件下进行前进行走和原地踏步任务:无、60Hz 和 140Hz DBS。延长的运动带β爆发持续时间将冻结者与非冻结者区分开来,是 FOG 的病理性神经特征,并且在 DBS 期间缩短,从而改善了步态。正常的步态参数,伴随着非冻结者的爆发缩短,在 DBS 期间保持不变。所有个体的半球间(STN)平均爆发持续时间差异与双腿步时差异强烈相关,但每个 STN 的平均爆发持续时间与对侧腿的步时之间没有相关性,这表明半球间的相互作用会影响步态。这些结果表明,在步态测量期间延长的 STNβ爆发持续时间是 FOG 的一个重要生物标志物,而 STN DBS 调节的是长而不是短的爆发持续时间,从而作用于恢复生理感觉运动信息处理,同时改善步态。

相似文献

引用本文的文献

4
Closing the loop in DBS: A data-driven approach.在深部脑刺激中实现闭环:一种数据驱动的方法。
Parkinsonism Relat Disord. 2025 May;134:107348. doi: 10.1016/j.parkreldis.2025.107348. Epub 2025 Feb 21.

本文引用的文献

2
Eight-hours adaptive deep brain stimulation in patients with Parkinson disease.帕金森病患者的 8 小时适应性脑深部电刺激。
Neurology. 2018 Mar 13;90(11):e971-e976. doi: 10.1212/WNL.0000000000005121. Epub 2018 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验